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EXCEPTION HANDLING CONTROL IN A SECURE PROCESSING
SYSTEM |

This invention relates to data processing systems. More particularly, thi

invention relates to the control of exception processing within data processing>

systems.

. A data processing apparatus will typlcally include a processor for running
apphcatlons loaded onto the data processing apparatus. The processor will operate under
the control of an operating system. The data required to run any particular apphcatlon
will typically be stored within a memory of the data processihg apparatus. It will be

apprecnated that the data may consist of the instructions contained within the application

' and/or the actual data values used during the execution of those instructions on the

Processor. L.

‘There arise many instances where the data used by at least one of the applications

" is sensitive data that should not be accessible by other applications that can be run on the

processor. An example would be where the data processing apparatus is a smart card,
and one of the applications is a security application which uses sensitive data, such as for
example secure keys, to perform validation, authentication, decryptlon and the like. Itis
clearly important in such situations to ensure that such sensmve data is kept secure so
that it cannot be accessed by other apphcatlons that may be loaded onto the data
processing apparatus, for example hacking applications that have been loaded onto the

data processmg apparatus with the purpose of seeking to access that secure data.

In known systems, it has typically been the _]Ob of the operatmg system developer -

to ensure that the operating system prov1des sufficient security to ensure that the secure
data of one application cannot be accessed by other apphcatlons running under the
control of the operatmg systemmn. However, as systems become more complex, the
general trend is for operating systems to become larger and more complex, and in such
situations it becomes increasingly difficult to ensure sufficient security within the

operating system itself.

i ,
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Examples of systems seeking to provide secure storage of sensitive data and to
provide protection against malicious program code are those described in United States
Patent Application US 2002/0007456 Al and United States Patents US 6,282,657 B and
US 6,292,874 B. o |

" Accordingly, it will be desirable to proVide an improved technique for seeking to

retain the security of such secure data contained within the memory of the data.

processiﬁg apparatus.

Viewed from one aspect the invention provides apparatus for processing data,

said. apparatus comprlsmg

a processor operable in a plurahty of modes and either a secure domain or a
non-secure domain including: |
at least one secure mode bemg a mode in said secure domam and
at least one non-secure mode being a mode in said non-secure domain;
wherein
when said processor is executing a program in a secure mode said program has
access to secure data which is not accessible when said processor is operating in a
non-secure mode; |
said processor is responsive to one or more exception conditions for triggering
exception processing; and - _
said processor being responsive to one or miore parameters specifying which of
said exceptions should be handled by a secure mode exception handler executing ina
secure mode and wyich of said exceptions should be handled by an exception handler
executing in a mode within a current one of said secure domain and said non-secure

domain when that exception occurs.

The in?enﬁori recognises that the wéy in which a secure processing system
having a secure domain and a non-secure domain deals with exceptions is important
in preserving the overall securlty of the system whilst ensuring that the system is able
to cope with the requirements of different operatmg systems. The invention prov1des
that whether a partlcular exception is dealt with by a secure mode exception handler
executmg in the secure mode or a non-secure mode exceptlon handler executmg in the

non-secure mode is controlled in dependence upon a separately deﬁned parameter.’
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Thus, by.appropriate setting of these parameters, the hardware can be ‘conﬁgured to

Jdirect different exceptions to different exception. handlers as requlred by different

operatmg systems or circumstances.

'Séme or all of the parameters controiling the selection of the exception
handler may be stored in an exception trap mask register such that they can be
changed under sofiware control subject to the monitor kernal or other controlling
program/mode having the requ1red access permissions. As an alternatlve, some or all
of the parameters may be defined by the hardware, such as being tied to particular

s1gna1 values in the circut concerned once a design and implementation is settled.

R

The exception trap mask register ‘may be conveniently provided in a
configuration controlling coprocessor associated with the main processor and may be

protected such that it is non-writable when the processor is in a non-secure mode

The different exception handlers may be respectively provided by portions of a

secure operating system and a non-secure operating system.

If the parameters specify that a switch between a secure mode and a non-
secure mode is required, then this may be advantageously made via a monitor mode in
which a high degree of protection may be given to the monitor program . for

controlling such security domain switching.

. The .monitor .program_n‘qay‘.»change the-parameters- controlling- whether or not
the exceptions should be handled by a secure exception handler or a non-secure

exception handler.

In the context of a system having a monitor mode and a monitor program, the

secure exception handler may be considered to be the monitor program itself and

accordingly the parameters specify whether an exception should be handled in the

existing security domain or whether it should be transferred to the monitor program in

" the monitor mode to be handled by the monitor program or as directed by the monitor

progtam.
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Viewed from another aspect the invention provides a method of processing
data, said method comprising the steps of: A
executlng a program with a processor operable in a plurality of modes and.
either a secure domain or a non-secure domain including:
" at least one secure mode being a mode in said secure domain; and
at least one non-secure mode being a mode in said non-secure domain;
wherein o
when said processor is executing a program in a secure mode said program hes
: access to secure data which is not accessible when said processor is operating in a
non-secure mode;
in response to one or more exception conditions triggering exception
processing using an exception handler; wherein
said processor selects an exception handler in response to one or more
parameters specifying which of said exceptions should be handled by a secure mode
exception handler executing in a secure mode and which of said exceptions should be
handled by an exception handler executing in a mode within a current one of said

" secure domain and said non-secure domain when that exception occurs.
The present invention will be described fuither, by way of example only, with
reference to preferred embodiments thereof as illustrated in the accompanying

drawings, in which:

Figure 1 is a block diagram schematically ilius’trating a data processing

—apparatus -i-n-raccordance-w-i-thfpreferred—embodimentso-flthe present invehtion;

- Figure 2 schematically illustrates different programs operating in a non-secure

domain and a secure domain;

Figure 3 schematically illustrates a matrix of processing modes associated

with different security domains;

Figures 4 and 5 schematically illustrate different relationships between

processing modes and security domains;
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Figure 6 illustrates one programmer’s model of a register bank of a processor
depending upon the processing mode; -
Figure 7 illustrates an example of providing separate register banks for a

secure domain and a non-secure domain;

Figure 8 schematically illustrates a plurality of processing modes with

switches between security domains being made via a separate monitor mode;

Figure 9 schematically illustrates a scenario for security domain switching

using a mode switching software interrupt instruction;

Figure 10 schematically 111ustrates one example of how non-secure mterrupt

requests and secure mterrupt requests may be processed by the system;

Figures 11A and 11B schematically illustrate an example of non-secure
interrupt request processing and an example of secure interrupt request processing in

accordance with Figure 10;

Figure 12 illustrates an alternative scheme for the handling of non-secure
interrupt request signals and secure interrupt request signals compared to that

illustrated in Figure 10;

_.M.._.-*Eigures-lsA..and_l3B-.i.1.1ﬁStrate_exampIe.Asc':enarios..forvdealing with a non-

secure interrupt request and a secure interrupt request in accordance with the scheme

illustrated in Figure 12;
Figure 14 is an example of a vector interrupt table;

Figure 15 schematically illustrates multiple vector interrupt tables associated

with different security domains;

Figure 16 schematically illustrates an exception control register;
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Figure 17 is a fiow diagram iiiusirating how an instruction attempting to

change a processing status register in a manner that alters the security domain setting

- can generate a separate mode change exception which in turn triggers entry into the -

monitor mode and running of the monitor program;

istrate a view of different processing modes and scenario
for switching between secure and non-secure domains in accordance with another

example embodiment(s);

Figure 21 is a diagram illustrating the memory management logic used in one

embodiment of the present invention to control access to memory;

Figure 22 is a block diagram illustrating the memory management logic of a

second embodiment of the present invention used to control access to memory;

Figure 23 is a flow diagram-illustrating the process performed in one
embodiment of the present invention within the memory management logic to process

a memory access request that specifies a virtual address; .

Figure 24 is a flow diagram illustrating the process performed in one

embodiment of the present invention within the memory management logic to process

a memory access request that specifies a physical address;

Figure 25 schematically illustrates how the partition checker of preferred
embodiments is operable to prevent access to a physical address within secure
memory when the device issuing the memory access request is operating in a non-

secure mode;

~ Figure 26 is a diagram illustrating the use of both a non-secure page table and '

a secure € page table in preferred embodlments of the present mventlon

Figure 27 is a diagram illustrating two forms of flag used within the main

translation lookaside buffer (TLB) of preferred embodiments;

o
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Figure 28 illustrates how memory may be partitioned after a boot stage in one

embodiment of the present invention;

Figure 29 iilustrates the mapping .of the non-secure memory by the meimory

management unit following the performance of the boot partition in accordance with

an embodiment of the present invention;

Figure 30 illustrates how the rights of a part of memory can be altered to allow
a secure application to share memory with a non-secure application in accordance

with an embodiment of the present invention;

Figure 31 illustrates how devices may be connected to the external bus of the

data processing apparatus in accordance with one embodiment of the present

invention;

Figﬁre 32 is a block diagram illustrating how devices may be coupled to the

external bus in accordance with the second embodiment of the present invention;

\

Figure 33 schematically shows possible granularity of monitoring functions -

for different modes and applications running on a processor;

Figure 34 shows possible ways of initiating different monitoring functions;

P

Figure 35 shows a table of control values for controlling availability of

different monitoring functions;

Figure 36 showé a positive-edge triggered FLIP-FLOP view;
Figure 37 a scan chain cell;

Figure 38 shows a plurality of scan chéin cells in a scan -chéin;
Figure 39 shows a debug TAP controller;

Figure 40A shows a debug TAP controller with a JADI input;
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Figure 40B shows a scan chain cell with a bypass register;

Figure 41 schematically illustrates a processor comprising a core, scan chains

and a Debug Status and Control Register;

Figure 42 schematically illustrates the factors controlling debug or trace

initialisation;

Figures 43A and 43B show a summary of debug granularity; _

Figure 45A and 45B show monitor debug when debug is enabled in secure

world and when it is not enabled respectively.

Figure 1 is a block diagram illustrating a data processing apparatus in
accordance with preferred embodiments of the present invention. The data pfocess;ing
appératus incorporates a processor core 10 within which is provided an arithmetic
logic unit (ALU) 16 arranged to execute sequences of instructions. Data required by

the ALU 16 is stored within'a register bank 14. The core 10 is provided with various

monitoring functions to enable diagnostic data to be captured indicative of the

activities of the processor coré. As an example, an Embedded Trace Module (ETM)
22 is provided for producing a real time trace of certain activ:ities of th.e processor core
in dependence on the contents of certain control registers 26 within the ETM 22
deﬁning which activities are to be traced. The trace signals are typically output to a
trace buffer from whére they can subsequently be analysed. A vecfored interrupt
contréllcr 21 is provided for maﬂaging the servicing of a plurality of interrupts which

may be raised by various peripherals ().

Further, as shown in Figure 1, another monitoring functionality that can be
‘provided within the core 10 is a debug function, a debugging application external to
the data processing apparatus being able to communicate with the core 10 via a Joint

Test Access Group (JTAG) controller 18 which is coupled to one or more scan chains

" Figure 44 schematically illustrates the granularity of debug while it is running; -

®
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12. Information about the status of various parts of the processor core 10 can be
output via the scan chains 12 and the JTAG coniroiier 18 to the external debugging
application. An In Circuit Emulator (ICE) 20 is used to store within registers 24
conditions identifying when the debug functions should be started and stopped, and

hence for example will be used to store breakpoints, watchpoints, etc.

The core 10 is coupled to a sysiem bus 40 via memory management logic 30
which is arranged to manage memory access requests issued by the core 10 for access

to locations in memory of the data processing apparatus. Certain parts of the memory

may be embodied by memory units connected directly to the system bus 40, for

example the Tightly Coupled Memory (TCM) 36, and the cache 38 illustrated in
Figure 1. Additional devices may also be provided for accessing such memory, for
example a Direct Memory Access (DMA) controller 32. Typically, various control
régisters 34 will be provided for defining certain control parameters of the various
clements of the chip, these control registers also being referred to herein as

coprocessor 15 (CP 15) registers.

The chip containing the core 10 will typically be coupled to an external bus 70

(for example a bus operating in accordance with the “Advanced Microcontroller Bus

Architecture” (AMBA) specification developed by ARM Limited) via an external bus
interface 42, and various devices may be connected to the external bus 70. These
devices may include master devices such as a digital signal prbcessbr (DSP) 50, or a
direct memory ‘access (DMA) controller 52, as well as various slave devices such as
the boot ROM 44, the screen driver 46, the external memory 56, an input/output (VO)
interface 60 or a key storage unit 64. These various slave devices illustrated in Figure
1 can all be considered as incorporating parts of the overall memory of the data
processing apparatus. For example, the boot ROM 44 will form part of the
addressable memory of the data pvrocessing apparatus, as will the external memory 56.
Further, devices such as the screen driver 46, I/O interface 60 and key storage unit 64

will all include internal storage elgments such as registers or buffers 48, 62, 66,

- respectively, which are all independently addressable as part of the overall memory of

the data processing apparatus. As will be d_iscus‘sed in more detail later, a part of the
memory, e.g. part of external memory 56, will be used to store one or more page

tables 58 defining information relevant to control of memory accesses.
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As will be appreciated by those skilled in the art, the external bus 70 wiil
typically be provided with arbiter and decoder logic 54, the arbiter being used to
arbitrate between multiple memory access requesfs issued by multiple master devices,
for example the core 10, the DMA 32, the DSP 50, the DMA 52, etc, whilst the
decoder will be used to determine which slave device on the external Bus should

handle any particular memory access request.

Figure 2 schematically illustrates various programs running on a processing
sigf'stem having a secure domain and a non-secure domain. The system isrprovided
with a monitor program 72 which executes at least partially in a monitor mode. A
security status flag is accessible only within the monitor mode and may be writter1 by
the monitor program 72. The monjtor program 72 is responsible for managing all
changes between the secure domaln and the non-secure domaln in either direction.
From a view external to the core the monitor mode is always secure and the monitor

pro gram is in secure memory.

Within the non-secure domain there is provided a non-secure operating system
74 and a plurality of non-secure application programs 76, 78 which execute in co-

operation with the non-secure operating system 74. ' In the secure domain, a secure

~ kernel program 80 is provided. The secure kernel program 80 can be considered to

. form a secure operatmg system. Typically such a secure kernel program 80 will be

desrgned to provide only those functions which are essential to processing activities
which must be provided in the secure domain such that the secure kernel 80 can be as
small and simple as possible since this will tend to make it more secure. A plurality

of secure applications 82, 84 are illustrated as executing in combination with the

. secure kernel 80.

Figure 3 illustrates a matrix of processing modes associated with different
security domains. In this particular example the processing modes are symmetrical
with respect to the security domain and accordingly Mode 1 and Mode 2 exist in both

secure and non-secure forms.
1

10
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The monitor mode has the highest level of security access in the system and 1s
the only mode entitied to switch the sysiem between the non-secure domain and the
'secure domain in either direction. Thus, all domain switches take place via a switch
to the monitor mode and the execution of the monitor program l72 within the monitor

mode.

modes 1, 2, 3, 4 and secure dornain processing modes a, b, c. In contrast to the
symmetrlc arrangement of Figure 3, Fi gure 4 shows that some of the processmg
modes may not be present in one or other of the security domains. The monitor mode
86 is again illustrated as straddling the non-secure domain and the secure domain.
The monitor mode 86 can be considered a secure processing mode, since the secure
status flag may be changed in this mode and monitor program 72 in the monitor mode
has the ability to itself set the security status flag it effectively provides the ultimate

level of security within the system as a whole.

Figure 5 schematically illustrates another a'rrangem.ent of processing modes
With respect to security domains. In this arrangement both secure and non-secure
domains are identified as well as a further dorhain. This further domain may be such
that it is isolated from other parts of a system in a ;zvay that it does not need to interact
with either of the secure domain or non-secure domain illustrated and as such the

issue of to which of these it belongs to is not relevant.

_As will be appreciated a processing system, such as a microprocessor is

normally provided with a register bank 88 in which operand values may be stored.
Figure 6 illustrates a programmer’s model view of an example register bank with
dedicated registers being provided for certain of the register numbers in certain of the
processing modes. More particularly, the exarhple of Figure 6 is an extension of the
known ARM register bank (e.g. as provided in ARM?7 processors of ARM Limited,
Cainbridge, England) which is provided with a dedicated saved program status
register, a dedicated stack pointer register and a dedicated link register R14 for each
'processing mode, but in this case extended by the provision of a monitor mode. As
illustrated in Figure 6, the fast interrupt mode has additional dedicated registers

provided such that upon entry of the fast interrupt mode there is no need to save and

11
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then restore register contents from other modes. The monitor mode may in alternative
embodiments also be provided with dedicated further registers in a simiiar manner io
the fast interrupt mode so as to speed up processing of a security domain switch and

reduce system latency associated with such switches.

Figure 7 schematically illustrates another embodiment in Wthh the register
bank 88 is provided in the form of two complete and separate register banks that are
respectwely used in the secure domain and the non-secure domain. This is one way in
which secure data stored within registers operable in the secure domain can be
prevented from becoming accessible when a switch is made to the non-secure domain.
However, this arrangement hinders the possibility of passing data from the non-secure
domain to the secure domain as may be permitted and desirable by using the fast and
efficient mechanism of placing it in a register which is accessible in both the non-

secure domain and the secure domain.

An important advantage of having secure re gister bank is to avoid the need for
ﬂushmg the contents of registers before switching from one world to the other. If
latency is not a critical issue, a simpler hardware system with no duphcated registers
for the secure domain world may be used, e.g. Figure 6. Thé monitor mode is
responsible switching from one domain to the other. Restoring context, saving
prev1ous context, as well as flushing registers is perfoxmed by a monitor program at
least partlally executing in monitor mode. The system behaves thus like a
v1rtuahsat10n model. This type of embodiment i is discussed further below. Reference
should be made to, for example, the programmer’s model of the ARM7 upon which

the security features described herein build.

Processor Modes

Instead of duplicating modes in secure world, the same modes support both
secure and non-secure domains (see Figure 8). Monitor mode is aware of the current
status of the core, either secure or non-secure (e.g. as read from an S bit stored is a

coprocessor configuration register).

12
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In the Figure 8, whenever an SMI (Software Monitor Interrupt instruction)

[, +ha

occurs, the core enters monitor mode to switch properiy from one world to the other

1.

~
L.

With reference to Figure 9:

The scheduler l_aunches thread 1

enters monitor mode. Under hardware control the current PC and CPSR (current

processor status register) are stored in R14_mon and SPSR_mon (saved processor

s";catus register for the monitor mode) and IRQ/FIQ interrupts are disabled. -

Al

3.

4.

The monitor program does the followmg tasks

The S bit is set (the secure status flag).

Saves at least R14 mon and SPSR_mon in a stack so that ﬁ;)n—secufe context
cannot be lost if an exception occurs whilst the secure application is running.
Checks there is a new thread to launch: secure thread 1. A mechanism (via
thread ID table) indicates that thread 1 is active in the secure world.

IRQ/FIQ interrupts are re-enabled. A secure application can then start in

secure user mode.

* Secure thread 1 runs until it finishes, then branches (SMI) onto the ‘return

from secure’ function of the monitor program mode (IRQ/FIQ interrupts are then

disabled when the core enters monitor mode)

- 5.

The ‘return from-secure’ function does the following tasks:

indicates that secure thread 1 is finished (e.g., in the case of a thread ID table,
remove thread 1 from the table)

Restore from stack non-secure context and flush requlred registers, so that no
secure data can be read once return has been made tQ the non-secure domain.
Then branches back to the non-secure domain with a SUBS instruction (this
restores the program counter to the correct point and updates the status flags),
restoring the PC (from restored R14 mon) and CPSR (from SPSR_mon). So
the return point in the non-secure domam is the instruction following the
previously executed SMI in thread 1. ) _

Thread 1 executes until the end, then gives the hand back to the scheduler.

13
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In other embodiments it may be desired not to allow SMIs to occur in user

modes.

Secure World Enfry

Reset

. - Whena hardware reset occurs, the MMU is disabled and the ARM core
(processor) branches to secure supervxsor mode with the S bit set. Once the secure
boot is terminated an SMI to go to monitor mode may be executed and the monitor
can switch to the OS in non-secure world (non;secure svc mode) if desired. Ifitis
desired to use a legacy OS this can-simply boo in secure supervisor mode and ignore

the secure state.

SMI INSTRUCTION

This mstructlon (a mode switching software interrupt instruction) can be

called from any non-secure modes in the non-secure domain (as prev1ously mentioned
it may be desired to restrict SMIs to privileged modes), but the target entry point

determined by the associated vector is always fixed and within monitor mode. Its up

" to the SMI handler to branch to the proper secure ﬁan‘ction that must be run (e.g.

controlled by an operand passed with the instruction).

-

Passing parameters from non-secure world to secure world can be performed

using the shared registers of the register p_ani(_with_in_.a_Figure 6 type register bank.

When a SMI occurs in non-secure world, the ARM core may do the following
actions in hardware: |
- ~ Branch to SMI vector (in secure memory access is allowed since you will now
be in monitor mode) into monitor mode
- Save PC into R14_mon and CPSR into SPSR_mon
- Set the S bit using the monitor program '
- Start to execute secure exception handler in monitor mode (restore/save

context in case of multi-threads)
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- Branch to secure user mode (or another mode, like svc mode) to execute the

s

e b L
aPlJlUlJll < 6

iction
- IRQ and FIQ are disabled while the core is in monitor mode (latency is

increased)

Secure World Exit

There are two possibiiities o exit secure worid:
- The secure function is finished and we return into previous non-secure mode
that had called this function. ‘
- The secure function is interrupted by a non-secure exception (e.g.

IRQ/FIQ/SMI).

Normal End of Secure Function

The secure function terminates normally and we need to résume an application
in the non-secure world at the instruction just after the SMI. In the secure user mode,
a ‘SMI’ instruction is performed to return to monitor mode with the appropri?.te
parameters corresponding to a ‘return from secure world’ routine. At this stage, the
registers are ﬂushed to avoid leakage of data between non-secure and secure worlds,
then non-secure context general purpose registers are restored and non-secure banked
registers are updated with the value they had in non-secure world. R14_mon and
SPSR_mon thus get the appropriate values to resume the-no_n-secure apl‘;»lication after

the SMI, by executing a ‘MOVS PC, R14’ instruction.

Exit of Secure Function Due to a Non-Secure Exception

In this case, the secure function is not finished and the secure context must be
saved before going into the non-secure exception handler, whatever the interrupts are

that need to be handled.

Secure Interrupts

There are several possibilities for secure interrupts.
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Two possibie solutions are proposed which depend on:
- What kind of interrupt it is (secure or non-secure)
- What mode the core is in when the IRQ occurs (either in secure or in non-

secure world)

~ Soiution One .

{ : .

In this solution, two distinct pins are required to support secure and ﬁori-sécure‘ :
interrupts. '
While in Non Secure world, if _
- an IRQ occurs, the core goes to IRQ mode to handle this interrupt as in ARM
cores such as the ARM7 |
] a SIRQ occurs, the core goes to monitor mode to save non-secure context and

thento a s;ecur_e IRQ handler to deal with the secure interrupt.

While in Secure world, if

- an SIRQ occurs, the core goes to the secure IRQ handler. The core does not
leave the secure world

- an IRQ occurs, the core goes to monitor mode where secure context is saved,
then to a non-secure IRQ -handler to deal with this non-secure interrupt. -

-

In other words, when an interrupt that does not belong to the currént world

__occurs, the core goes directly to monitor mode, otherwise it stays in the current world

(see Figure 10).

IRQ Occurring in Secure World
See Figure 11A:

1. The scheduler launches thread 1.

2. Thread 1 needs to perform a secure function => SMI secure call, the core

- enters mon\itor mode. Current PC and CPSR are stored in R14_mon and SPSR_mon,

. IRQ/FIQ are disabled.
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3. The monitor handler (program) does the following tasks:
- The S bit is set.

- Saves at least R14_mon and SPSR_mon in a stack (and possibly other
registers are also pushed) so that non-secufe context cannot be lost if an
excéption occurs whilst the secure application is running.

- Checks there is a new thfe_ad to launch: secure thread 1. A mechanism (via
thread ID tabie) indicates that thread 1 is active in the secure world.

;_ Secure application can then start in the secure user mode. IRQ/FIQ are then
re-enabled.

4. An IRQ occurs while secure thread 1 is running. The core jumps directly to

monitor mode (specific vector) and stores current PC in R14_mon and CPSR in

SPSR_mon in monitor mode, (IRQ/FIQ are then disabled).

55. Secure bcontext must be saved, previous non-secure context is restored. The

monitor handler may be to IRQ mode to update R14_irq/SPSR_irq with appropriate

values and then passes control to a non-secure IRQ handler.

6. The IRQ handler services the IRQ, then gives control back to thread 1 in the

non-secure world. By restoring -SPRS_irq and R14 _irq into the CPSR and PC, thread

1 is now pointing onto the SMI instruction that has been interrupted.

7. The SMI instruction is re-executed (same instruction as 2).

8. The monitor handler sees this thread has previously been interrupted, and

restores the thread 1 context. It then branches to secure thread 1 in user mode,

pointing onto the instruction that has been interrupted.

9. Secure thread 1 runs until it finishes, then branches onto the ‘return from

_secure’_function in monitor mode (dedicated SMI).

10. The ‘return from secure’ function does the following tasks:

- indicates that secure thread 1 is finished (i.e., in the case of a thread ID table,

remove thread 1 from the table).
- restore from stack non-secure context and flush required registers, so that no
secure data can be read once a return is made to non-secure world.
- branches back to the non-secure world with a SUBS instruction, restoﬁng the
. PC (from restored R14_mon) and CPSR (from SPSR_moh). So, the return
point in the non-secure world should be the instruction following the
previously executed SMI in thread 1. -

11. Thread 1 executes until the end, then gives control back to the scheduler.
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SIRG Gecurring in Non-Secure Worid

See Figure 11B:

1. The schedule launches thread 1

2. A SIRQ occurs while secure thread 1 is running. The core jumps directly to
monitor mode (specific vector) and stores current PC in R14_mon and CPSR in
SPSR_mon in monitor mode, IRQ/FIQ are then disabled.

3. Non-Secure context must be saved', then the core goes to a secure IRQ handier.
4.; .The IRQ handler services the SIRQ, then gives control back to the monitor

mode handler using an SMI with appropriate parameters
Sf The monitor handler restores non-secure context so that a SUBS 1nstruct10n
makes the core return to the non-secure world and resumes the interrupted thread 1.

6. Thread 1 executes until the end, then gives the hand back to the scheduler.

The mechanism of Figure 11A has the advantage of providing a deterministic
way to enter secure world. However, there are some problems associated with
interrupt priority: e.g. while a SIRQ is running in s'ecure interrupt handler, a non-
secure IRQ with higher priority may occur. Once the non-secure IRQ is finished,
there is a need to recreate the SIRQ event so that the core can resume the secure

interrupt.

Solution Two

In this mechanism (See Figure 12) two distinct pins, or only one, may support

secure and non-secure interrupts. Having two pins reduces interrupt latency.

While in Non Secure world, if o

- an IRQ occurs, the core goes to JRQ mode to handle this interrupt like in
ARM7 systems

- a SIRQ occurs, the core goes to an IRQ handler where an SMI instruction will
make the core branch to monitor mode to save non-secure context and then to

a secure IRQ handler to deal with the secure interrupt.
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1.
2.

While in 2 Secure w.orld, if

a SIRQ occurs,lthe core goes to the secure IRQ handler. The core does not
leave the secure world |

an IRQ occurs, the core goes to the secure IRQ handler where an SMI
instruction will make the core branch to monitor mode (where secure context
is saved), then to a non-secure IRQ handler to deal with this non-secure

IRQ Occurring In Secure World
See Figure 13A:

The schedule launches thread 1.

Thread 1 needs to perform a secure function => SMI secure call, the core

enters monitor mode. Current PC and CPSR are stored in R14_mon and SPSR_mon,

IRQ/FIQ are disabled.

3.

4.

The monitor handler does the following tasks:

The S bit is set.

Saves at least R14_mon and SPSR_mon in a stack (eventually other registers)
so that non-secure context cannot be lost if an exception occurs whilst the

secure application is running.

‘Checks there is a new thread to launch: secure thread 1. A mechanism (via

' thread ID table) indicates that thread 1 is active in the secure world.

Secure application can then start in the secure user mode. IRQ/FIQ are re-

enabled.

An IRQ occurs while secure thread 1 is running. The core jumps directly to

secure JRQ mode.

5.

The core stores current PC in R14_irq and CPSR in SPSR_irq. The IRQ

handler detects this is a non-secure interrupt and performs a SMI to enter monitor

mode with appropriate parameters.

6.

Secure context must be saved, previous non-secure context is restored. The

monitor handler knows where the SMI came from by reading the CPSR. It can also

‘go to JRQ mode to read R14_irq/SPSR_irq to save properly secure context. It can
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also save in these same registers the non-secure context that must be restored once the
IRG routine will be finished:

7. The IRQ handler services the IRQ, then gives control back to thread 1 in the
non-secure world. By restoring SPRS_irq and R14_irq into the CPSR and PC, the

core is now pointing onto the SMI instruction that has been interrupted.

8. The SMI instruction is re-executed (same mstructlon as 2).
9. The monitor handler sees this thread has previously been interrupted; and

resiores ine thread 1 context. It then branches to secure thread 1 in user mode

pomtmg to the instruction that has been interrupted. -

10 Secure thread 1 runs until it finishes, then branches onto the ‘return from

seéure’; function in monitor mode (dedicated SMI).

11. The ‘return from secure’ function does the following Vtasks:

- . indicates that secure thread 1 is finished (i.e., in the case of a thread ID table,
remove thread 1 from the table). |

- restores from stack non-secure context and flushes required registers, so that
no secure information can be read once we return in non-secure world.

- branches back to the non-secure world with a SUBS instruction, restoring the
PC (from restored R14_mon) and CPSR (from SPSR_mon). The return poiht
in the non-secure world should be the instruction followiﬁg the previously

executed SMI in thread 1.
11. Thread 1 executes until the end, then gives the hand back to the scheduler.

SIRQ Occurring in Non-Secure World

See Figure 13B:

1. ‘The schedule launches thread 1.

2. ASIRQ océﬁrs while secure thread 1 is running.

3. The core jumps directly irq mode and stores current PC in R14_irq and CPSR
in SPSR_irq. IRQ is then disabled. The IRQ handler detects this is a STRQ and

performs a SMI instruction with appropriate parameters.

. . . % .
4, Once in monitor mode, non-secure context must be saved, then the core goes

to a secure IRQ handler.
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5 The secure IRQ handler services the SIRQ service routine, then gives control
back to monitor with SMI with appropriate parameters

6.  The monitor handler restores non-secure context so that a SUBS instruction

makes the core returns to non-secure world and resumes the interrupted IRQ handler.

7. The IRQ handler may then return to the non-secure thread by performing a
SUBS.
8. Thread 1 executes until the end, then gives control back to the scheduler.

With the mechanism of Figure 12, there is no need to recreate the SIRQ event
in the case of nested interrupts, but there is no guarantee that secure interrupts will be

performed.

Exception Vectors

At least two physical vector tables are kept (although from a virtual address
point of view they may appear as a single vector table), one for the non-secure world
in non-secure memory, the one for the secure world in secure memory (not accessible
from non-secure world). The different virtual to physical memory mappings used in

the secure and non-secure worlds effectively allow the same virtual memory addresses

to access different vector tables stored in physical memory. The monitor mode may

always use flat memory mapping to provide a third vector table in physical memory.

If the interrupts follow the Figure 12 mechanism, there would be the following
vectors shown in Figure 14 for each table. This vector sét is duplicated in both secure

and non-secure memory.

- Exception , Vector Offset Corresponding Mode

Reset 0x00 Supervisor Mode (S bit
set)

Undef . 0x04 | Monitor mode/Undef

mode

SWI 0x08 Supervisor mode/Monitor

mode
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Préfetch Abort 0x0C Abort mode/Monitor mode
Data Abort 0x10 . Abort mode/Monitor

' _ Mode
SMI 0x14 . Undef mode/Monitor

: mode

IRQ/SIRQ 0x18 IRQ mode
FI1Q 0xiC FIQ mode

NB. The Reset entry is only in the secure vector table. When a Reset is

performed in non secure world, the core hardware forces entry of supervisor mode

and setting of the S'bit so that the Reset vector can be accessed in secure memory.

Figure 15 illustrates three excéption vector tables respectively applicable toa
secure mode, a non—secure mode and the monitor mode. These exception vector
tables may be programmed with exception vectors in order to match the re(iuirements
and characteristics of the secure and non-secure operating systems. Each of the
exception vector tables may have an associated vector table base "address register
within CP15 storing a base address pointing to that table within memory. When an
exception occurs the hardware will reference the vector table base address register
corresponding to the current state of the system to determine the base address of the
vector table to be used. Alternatively, the different virtual to physical memory
mappings apphed in the different modes may be used to separate the three different
‘vector table sstored at different phys1ca1 memory addresses. As illustrated in Figure
16, an exception trap mask register is prov1ded in a system (configuration controlling)
coprocessor (CP15) associated with the processor core. This exception trap mask -
register provides flags associated with respectivé exception types. These flags

indicate whether the hardware should operate to direct processing to either the vector

~ for the exception concerned within its current domain or should force a switch to the

monitor mode (which is a type of secure mode) and then follow the vector in the

monitor mode vector table. The exception trap mask register (exception control

.reglster) is only writable from the monitor mode. It may be that read access is also

prevented to the exceptlon trap mask register when in a non-secure mode. It will be
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seen that .the; exception trap mask register of Figure 16 does not include a flag for the

in the secure supervisor mode as specified in the secure vector table in order to ensure
a secure boot and backwards compatibility. It will be seen that in Figure 15, for the
sake of completeness, reset vectors have been shown in the vector tables other than

the secure supervisor mode secure vector table.

Figure 16 also illustrates that the flags f’or the different éxception types within
tk}le exception trap mask register are programmable, such as by the monitor program
éliuring secure boot.  Alternatively, some or all of the flags may in certain
ifnplementation's be provided by physical input signals, e.g. the secure interrupt flag
SIRQ may be hardwired to always force monitor mode entry and execution of the
corresponding monitor mode secure interrupt request vector when a secure interrupt
signal is received: Figure 16 illustrates only that portion of the exception trap register
concerned with non-secure domain exceptions, a similar set of programmable bits will

be provided for secure domain exceptions.

Whilst it will be understood from the above that at one level the hardware acts
to either force an interrupt to be serviced by the current domain exception handler or
the monitor mode exception handler dependin’g upon the exception control register
flags, this is only the first level of control that is applied. As an example, it is possible
for an exception to occur in the secure mode, the secure mode exception vector to be

followed to the secure mode exception handler, but this ‘secure mode exception

_handler then decide 'that the_ gxceptioh_is of a nature that it is better dealt with by the

'non-secure exception handler and accordingly utilise an SMI instruction to switch to

the non-secure mode and invoke the non-secure exception handler. The converse is
also possible where the hardware might act to initiate the non-secure exception
handler, but this then execute instructions which direct processing to the secure

exception handler or the monitor mode exception handler.

Figure 17 is a flow diagram schematically illustrating the operation of the

system so as to support another possible type of switching request associated with a _
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new type of exception. At step 98 the hardware detects any instruction which is
attempting to change to monitor mode as indicate in a current program status register
(CPSR). When such an attempt is detected,' then a new type of exception is triggered,
this being referred to herein as a CPSR violation exception. The generation of this
CPSR violation éxception at step 100 results in reference to an appropriate exception
vector within the monitor mode and the monitor prégram is run at step 102 to handle

P Y f“hSh wrsmlads an
U0 VOO VUL

tion exception.

It will be appreciated that the meéhanisms for initiating a switch between
secure domain and non-secure domain discussed in relation to Figure 17 may be
provided in addition to support for the SMI instruction previously discussed. This
exception mechanism may be provided to respond to unauthorised attempts to switch
mode as all authorised attempts should be made via an SMI instruction. Alternatively,
éuch a mechanism may be legitimate ways to Aswitch between the secure domain and
the non-secure domain or may be provided in order to give backwards compatibility
with existing code which, for example, might seek to clear the processing status
register as part of its normal operatién even thougﬁ it was not truly trying to make an
unauthorised attempt to switch between the secure domain and the non-secure

domain. ’ \

A description of an alternative embodiment(s) of the present technique
considered from a programmer’s model view is given below in relation to Figures 18

to 20 as follows:

In the following description, we will use the following terms that must be
understood in the context of an ARM processor as designed by ARM Limited, of
Cambridge, England. )

- S bit : Secure state bit, contained in a dedicated CP15 register.
- ‘Secure/Non-Secure state’. This étate is defined by the S bit value. It indicates

whether the core may access the Secure world (when it is in Secure state, i.e.

S=1) or is restricted to the Non-secure world only (S=0). Note that the Monitor

mode (see further) overrides the S bit status. -

- "Non-Secure World' groups all hardware/software accessible to non-secure

applications that do not require security.
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- 'Secure World' groups all hardware/software (core, memory...) that is only
accessibie when we execute secure code.
- Monitor mode: new mode that is responsible for switching the core between

the Secure and Non-secure state.

Tl A~
- 111C CUL

(¢}
¢
)
g
o
ra

W
- The core can access the Secure world only when it is in Secure state or

Monitor mode.

i
Al

- SMI: Software Monitor Interrupt: New instruction that will make the core

enter the Monitor mode through a dedicated SMI exception vector.'Thread ID':
is the identifier associated to each thread (controlled by an OS). For some

types of OS Wheré the OS runs in non-secﬁre world, each time a secure
function is called, it will be necessary ‘to pass as a parameter the current thread
ID to link the secure function to its calling non-secure application. The secure
world can thus support multi-threads.

- Secure Interrupt defines an interrupt generated by a Secure peripheral.
Programmer’s model

-- Carbon Core Overview
The concept of the Carbon architecture, which is the term used herein for processors
_._using the present techniques, consists in separating two worlds, one secure and

one non-secure. The secure world must not leak any data to non-secure world.

In the proposed solution, the secure and non-secure states will share the same
(existing) register bank. As a consequence, all current modes present in ARM cores

(Abort, Undef, Irq, User, ...) will exist in each state.

The core will know it operates in secure or non-secure state thanks to a new

state bit, the S (secure) bit, instantiated in a dedicated CP15 register.
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Controlling which instruction or event is allowed to modify the S bit, i.e. to
change from one state to the other, is a key feature of the security of the sysiem. The
current solution proposes to add a new mode, the Monitor mode, that will “supervise”

switching between the two states. The Monitor mode, by writing to the appropriate
CP15 register, would be the only one allowed to alter the S bit.

Finally, we propose to ad ne flexi
excepuons apari from the reset, wouid be handied either in the state where they

happened, or would be directed to the Monitor mode. This would be left configurable
thanks to a dedicated CP15 register.

The details of this solution are discussed in the following paragraphs.

Processor state and modes

Carbon new features

Secure or Non-secure state (S bit)

One major feature of the Carbon core is the presence of the S bit, which
indicates whether the core is in a Secure (S=1) or Non-secure (S=0) state. When in
Secure state, the core would be able to access any data in the Secure or Non-secure
worlds. When in Non-Secure state, the core would be restricted to the Non-secure
world only.

The only_exc,cptibn to this rule concerns the Monitor mode, which overrides
the S bit information. Even when S=0, the core will perform Secure privileged
accesses when it is in Monitor mode. See next paragraph, Monitor mode, for further

information

The S bit can only be read and written in Monitor mode. Whatever the S bit
value, if any other mode tries to access it, this will be either ignored or result in an

Undefined exception.

t

All exceptions, apart from Reset, have no effect on the Secure state bit. On
Reset, the S bit will be set, and the core will start in Supervisor mode. Refer to the

boot section for detailed information.
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Secure/Nonsecure states are separate and operate independentiy of the

- ARM/Thumb/Java states.

Monitor mode

One other 1mportant feature of the Carbon system is the creation of a new
mode, the Momtor mode. This wiii be used to contirol the core switcl*:ng between the .
Secure and Non-secure states . It will always be con51dered as a secure mode, 1.€.
y\:zhatcver the value of the S bit, the core will always perform Secure Privileged
a"j,ccesses to the external world when it is in Monitor mode.

Any Secure privileged mode (i.e. .privileged modes when S=1) would be able
to switch to Monitor mode by simply writing the CPSR mode bits (MSR, MOVS, or
equivalent instruction). However, this would be forbidden in any Non-secure mode or
Secure user mode. If this ever happens, the instruction would be ignored or cause an

exception.

There may be a need for a dedicated CPSR violation exception. This exception
would be raised by any attempt to switch to Monitor mode by directly writing the

CPSR from any Non-secure mode or Secure user mode.

All e—xhcépti‘o.n-s. e;{cept Reset are in effect disabled when Monitor mode is
active:
e all interrupts aré masked; -
e all memory exceptions are either ignored or cause a fatal exception.

e undefined/SWY/SMI are ignored or cause a fatal exception.
When entering Monitor mode, the.interrupts are.automatiéally disabled and the

system monitor should be written such that none of the other types of exception can

happen while the system monitor is running.
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Monitor mode needs to have some private registers. This solution proposes
that we oniy dupiicate the minimai set of registers, i.e R13 (sp_mon), R14 (ir_mon)

and SPSR (spsr_mon).

In Monitor mode, the MMU will be disabled (flat address map) as well as the

- MPU or partition checker (the Monitor mode will always perform secure privileged

mmrbmammnnl A mmcoao N T mcorme e am B B
€X1€i11dl aCCESSES). rOWCLVLL, SpeEliany progic

(éacheability, ...) would still bé active.

NewA instruction »

This proposal requires adding one new instruction to the existing ARM
instruction set.
| The SMI (Software Monitor Interrupt) instruction would be used to enter the
Monitor mode, branching at a fixed SMI exception vector. This instruction would be
mainly used to indicate to the Monitor to swap between the Non-secure and Secure

State.

As an alternative (or in addition) it would be possible to add a new instruction
to allow the Monitor mode to save/restore the state of any other mode onto/from the

Monitor stack to improve context switching performance.

Processor Modes

As discussed in the previous paragraph, only one new mode is added in the
core, the Monitor mode. All existing modes remain available, and will exist both in

the secure and non-secure states.

In fact, Carbon users will see the structure illustrated in Figure 18.

Processor registers

This embodiment proposes that the secure and the non-secure worlds share the

same register bank. This implies that, when switching from one world to the other

~ through the Monitor mode, the system monitor will need to save the first world

context, and create (or restore) a context in the second world.

28



10

15

20

25

30

DYC Ref: P15377GB .
ARM Ref: P236 )

Passing parameters becomes an easy task: any data contained in a register in
the first world will be available in the same register in the second world once the

system monitor has switched the S bit.

However, apart from a limited number of registers dedicated to passing

parameters, which will need to be strictly controlled, all other registers will need to be
flushed when passing from Secure to Non-secure state in order to av01d any leak of

Secure data. This will need to be ensured by the Monitor kernel.

The possibility of implementing a hardware mechanism or a new instruction to
directly flush the registers when switching from Secure to Non-secure state is also a

possibility.

Another solution proposed involves duplicating all (or most of) the existing
register bank, thus having two physically separated register banks between the Secure
and Non-secure state. This solution has the main advantage of clearly separating the
secure and non-secure data‘éontained in the registers. It also allows fast context
switching between the secure and non-secure states. However, the drawback is that
passing parameters through registers becomes difficult, unless we create some

dedicated instructions to allow the secure world access the non-secure registers

Figure 19 illustrates the available registers depending on the processor mode.

Note that the processor state has no impact on this topic.

Exceptions

Secure interrupts

Current Solution

It is currently proposed to keep the Same interrupt pins as in the current cores,
i.e. IRQ and FIQ. In association with the Exception Trap Mask register (defined later
in the document), there should be sufficient flexibility for any system to implement

and handle different kind of interrupts.

VIC enhancement
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We could_enhance the VIC (Vectored Interrupt Controller) in the following

way: the VIC may contain one Secure information bit associated to each vectored

address. This bit would be programmable by the Monitor or Secure privileged modes

only. It would indicate whether the considered interrupt should be treated as Secure,

and thus should be handled on the Secure side.

Interrupts happening in Non-Secure state, the other one for ali Non-Secure interrupts

happening in Secure state.

i
4

The S bit information contained in CP15 would be also available to the VIC as

a new VIC input.

The following table summarizes the different possible scenarios, depending on

the status of the incoming interrupt (Secure or Non-secure, indicated by the S bit

associated to each interrupt line) and the state of the core (S bit in CP15 =S inpvut

signal on the VIC).

Core in secure state

(CP15 — S=1)

Core in Non-secure state

(CP15 - S=0)

Secure Interrupt

INo need to switch between worlds.
The VIC directly presents to the
core the Secure address associated
to the interrupt line. The core
simply has to branch at this address
where it should find the associated

ISR.

The VIC has no Vector associated
to this interrupt in the Non-secure
domain. It thus presents to the core
the address contained in the Vector
address register dedicated to all »
Secure interrupts occurring in Non-
secure world. The core, still in Non-
secure world, then branches to this
address, where it should find an
'ISMI instruction to switch to Secure
world. Once in Secure world, it
would be able to have access to the

correct ISR.
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INon-Secure

ﬁnterrupt

The VIC has no Vector associated

to this interrupt in the Secure

address register dedicated to all
Non-secure interrupts occurring in

Secure world. The core, still in

address, where it should find an
SMI instruction to switch to Non-
secure world. Once in Non-Sécure
world, it would be able to have

access to the correct ISR.

domain. It thus presents to the core

Secure world, then branches to this

No need to switch between worlds.
The VIC directly presents to the

core the Non-secure address

the address contained in the Vector |associated to the interrupt line. The

core simply has to branch at this
address where it should find the

associated Non-secure-ISK.

Exception handling configurability

In order to improve Carbon flexibility, a new register, the Exception Trap

Mask, would be added in CP15. This register would contain the following bits:

(Non-secure state)

- Bit 0: Undef exception
- Bit 1: SWI exception (Non-secure state)
- Bit 2: Prefetch abort exception .

- Bit 3:
- Bit 4:
- Bit 5:
- Bit 6:

- Bit 16: Undef exception
- Bit 17: SWI exception
- Bit 18: Prefetch abort exception
- Bit 19: Data abort exception
- Bit 20: IRQ exception
- Bit 21: FIQ exception

Data abort exception
IRQ exception
FIQ exception
SMI exception

(S ecuréstate)

(Secure state)

(Secure state)

31

(Non-secure state)
_(Non-secure state)

(Non-secure state).

(Non-secure state)

(both Non-secure/Secure states)

(Secure state)

(Secure state)

(Secure state)




10

15

20

25

DYC Ref: P15377GB
ARM Ref: P236

®

The Reset exception does not have any corresponding bit in this register. Reset
wiil aiways cause the core to enter the Secure supervisor mode through its dedicated

vector.

If the bit is set, the corresponding exception makes the core enter the Monitor
mode. Otherwise, the exception will be handled in its corrésponding handler in the

world where it occurred.

This regisier would only be visible in Monitor mode. Any instruction trying to
access it in any other mode would be ignored.

This register should be initialized to a system-specific value, depending upon
whether the system supports a monitor or not. This functionality could be controlled
by a VIC. '

Exception vectors tables
As there will be separate Secure and Non-secure worlds, we will also need

separate Secure and Non-secure exception vectors tables.

Moreover, as the Monitor can also trap some exceptions, we may also need a

third exception vectors table dedicated to the Monitor.
The following_.table,suminarizes those three different exception vectors tables:

In non-secure memory:

Address |[Exception Mode Automatically accessed when
0x00 b |
0x04 Undef [Undef ~ [Undefined instruction exeéuted when core is

in Non-Secure state and Exception Trap

Mask reg [Non-secure Undef]=0
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0x08 SWI Supervisor [SWI instruction executed whén core is in
Non-Secure state and Exception Trap Mask
reg [Non-secure SWI]=0
0x0C Prefetch Abort IAbort /Aborted instruction when core is in Non-
Secure state and Exéeption Trap Mask reg
" [Non-secure PAbort]=0
0x10 Data Abort |Abort Aborted data when core is in Non-Secure
state and Exception Trap Mask reg {Non-
secure DAbort]=0
0x14 Reserved
0x18 RQ TRQ TRQ pin asserted when core is in Non-
Secure state and Exception Trap Mask reg
; - [Non-secure IRQ]=O. |
0x1C .FIQ FIQ FIQ pin asserted when core is in Non-
Secure state and Exception Trap Mask reg
[Non-secure FIQ]=0
In secare memory:
Address [Exception Mode lAutomatically accessed when
0x00 Reset™ Supervisor [Reset pin asserted
0x04 Undef Undef [Undefined instructior; executed when core is
in Secure state and ExceptioniTrap Mask
Feg [Secure Undef]=0
0x08 SWI Supervisor [SWI instruction executed when core is in
Secure state and Exception Trap Mask reg
[Secure SWI]=0 |
0x0C Prefetch Abort IAbort Aborted instruction when core is in Secure
state and Exception Trap Mask reg [Secure
P Abort]=0
Jox10 Data Abort IAbort Aborted data when core is in Secure state
and Exception Trap Mask reg [Secure -
Dabort]=0 ‘ '
0x14 Reserved
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0x18 | TRQ RQ TRQ pin asserted when core is in Secure
| state and Exception Trap Mask reg [Secure
TRQJ=0 o
0xiIC FIQ FIQ FTQ pin asserted when core is in Secure
‘ state and Exception Trap Mask reg [Secure
1Q]=0 '

¥ Refer to “Boot” section for further expianation on the Reset mechanism

In Monitor memory (flat mapping):

Aeress

Exception

Mode

Automatically accessed when

000

0x04

Undef

Monitor

Undefined instruction executed when
core is in Secure state and Exception Trap
Mask Vreg [Secure Undef}=1

core is in Non-secure state and Exception

Trap Mask reg [Non-secure Undef]=1

0x08

SWI

Monitor

SWI instruction executed when

core is in Secure state and Exception Trap
Mask reg [Secure SWI}=1 |

core is in Non-secure state and Exception

Trap Mask reg [Non-secure SWIj=1

0x0C

Prefetch Abort

Monitor

Aborted instruction when

core is in Secure state and Exception Trap

IMask reg [Secure IAbort]=1

core is in Non-secure state and Exception

Trap Mask reg [Non-secure Iabort]=1

0x10

[Data Abort

Monitor

Aborted data when »

core is in Secure state and Exception Trap
Mask reg [Secure PAbort]=1 o
core is iJn Non-secure state and Exception

Trap Mask reg [Non—s:ecure' Pabort]=1

0x14

SMI

onitor
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0x18 TRQ Monitor - [IRQ pin asserted when

' core is in Secure state and Exception Trap
Mask reg [Secure IRQ]=1

core is in Non-secure state and Exception

Trap Mask reg [Non-secure IRQ]=1

0x1C FIQ Monitor - FIQ pin asserted when

core is in Secure state and Exception
Mask reg [Secure FIQ]=1

core is in Non-secure state and Exception

Trap Mask reg [Non-secure FIQ]=1

In Monitor mode, the exceptions vectors may be duplicated, so that each

éxception will have two different associated vector:
- One for the exception arising in Non-secure state

- One for the exception arising in Secure state

This may be useful to reduce the exception latency, because the monitor kernel
does not have any more the need to detect the originating state where the exception
occurred.

Note that this feature may be limited to a few exceptions, the SMI being one
of the most suitable candidates to improve the switching between the Secure and Non-

secure states.

Switching between worlds
When switching between states, the Monitor mode must save the context of
the first state on its Monitor stack, and restore the second state context from the

Monitor stack.

The Monitor mode thus needs to have access to any register of any other

modes, including the private registers (r14, SPSR, ..).
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To handle this, the proposed solution consists in giving any privilege mode in '
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With such a system, switching between worlds is performed as follows:
- enter Monitor mode

- set

[t

he S bit

- swiich to supervisor mode - save the supervisor registers on the MONITOR
‘stack (of course the supervisor mode will need to have access to the Monitor
stack pointer, but this can be easily done, for example by using a common
register (RO to R8)) » |

- switch to System mode - save the registers (=samé as the user mode) on the

' Monitor stack -

- IRQ registers on the Monitor stack

etc ... for all modes

- Once all private registers of all modes are saved, revert to Monitor mode with
a simple MSR instruction (= simply write Monitor value in the CPSR mode
field)

The other solutions have also been considered:
- Add a new instruction that would allow the Monitor to save other
modes'private registers on its own stack.

- Implement the Monitor as a new "state", i.e. being able to be in Monitor state
(to have the appropriate access rights) and in IRQ (or any other) mode, to see

the IRQ (or any other) private registers.

Boot mechanism
The boot mechanism must respect the -following features:
- Keep compatibility with legacy OSes.

- Boot in most privileged mode to ensure the security of the system.

As a consequence, Carbon cores will boot in Secure Supervisor mode.
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The different systems will then be:

For systems wanting to run legacy OSes, the S bit is not taken into account
and the core will just see it boots in Supervisor mode. .

For systems wanting to use the Carbon features, the core boots in Secure
privileged mode which should be able to configure all secure protections in the

system (potentially after swapping to Monitor mode)

Basic Scenario (See Figure 20)

Thread 1 is running in non-secure world (S bit = 0)

This thread needs to perform a secure function => SMI instruction.

The SMI instruction makes the core enter the Monitor mode through a
dedicated non-secure SMI vector.

LR _mon and SPSR_mon are used to save the PC and CPSR of the non secure
mode. ‘

The S bit remains unchanged (i.e. non-sechre state).

The monitor kernel saves the non-secure context on the monitor.

It also pushes LR_mon and SPSR_mon.

The monitor kernel then changes the “S” bit by writing into the CP15 register.
It must keep track that a “secure thread 17 will be started in the secure world
(e.g. by updating a Thread ID table).

Finally, it exits the monitor mode and switches to secure supervisor mode

(MOVS instruction after having updated LR_mon and SPSR_mon?).

The secure kernel dispatches the application to the right secure memory
location, then switches to user mode (e.g. using a MOVS). '

The secure function in executed in secure user mode. Once finished, it calls
an “exit” function by performing an appropriate SWL

The SWI instruction makes the core enter the secure svc mode through a
dedicated SWI vector, that in turh performs the “exit” function. This “exit”
function ends with an «gMI” to switch back to monitor mode.

The SMI instruction makes the core enter the monitor mode through a
dedicated secure SMI vector. _ -

LR_mon and SPSR_mon are used to save the PC and CPSR of the Secure svc

mode.

The S bit remains unchanged (i.e. Secure State).
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The monitor kernel registers the fact that secure thread 1 is finished (removes

the secure thread 1 ID from the thread ID table?).

It then changes the “S” bit by writing into the CP15 register, returning to non-
secure state.

The monitor Kernel restores the non-secure context from the monitor stack.

It also load the LR_mon and CPSR_mon previously saved in step 2.

Finally, it exits monitor mode with a SUBS, that will make the core return in

s mmiiis 1o D R S SEL J.
107i-5ECUIre User mode, o tic 1sStiuciion

Figure 21 illustrates in more detail the operation of the memory management
logic 30 of one embodiment of the present invention. The memory management logic
consists of a Memory Management Unit (MMU) 200 and a Memory Protection Unit
(;I\/IPU) 220. Any memory access request issued by the core 10 that specifies a virtual -
address will be passed over path 234 to the MMU 200, the MMU 200 being:
responsible for performing predetermined access control functions, more particularly
for determining the physical address corresponding to that virtual address; and for

resolving access permission rights and determining region attributes.

The memory system of the data processing apparatus consists of secure
memory and non-secure memory, the secure memory being used to store secure data
that is.intended only to be accessible by the core 10, or one or more other master
devices, when that core or other device is operating in a secure mode of operation, and

is accordingly operating in the secure domain. o

In the embodiment of the present invention illustrated in Figure 21, the
policing of attempts to access secure data in secure memory by applications running
on the core 10 in non-secure mode is performed by the partition checker 222 within

the MPU 220, the MPU 220 being managed by the secure operating system, -also

_referred to herein as the secure kernel.

In accordance with preferred embodiments of the present invention a non-
secure page table 58 is provided within non-secure memory, for example within a

non-secure memory portion of external memory 56, and is used to store for each of a
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number of non-secure memory regions defined within that page table a corresponding
ins information from which the MMU 200 can derive
access control information required to enable the MMU to perform the predetermined
access control functions, and accordingly in the embodiment described with reference
to Figure 21 will provide information about the virtual to physical address mapping,

the access permission ﬁghté, and any region attributes.

Furihermore, in accordance with the preferred embodimenis of the present
invention, at least one secure page table 58 is provided within secure memory of the
rﬁémory syStem, for example within a secure part of external memory 56, which again
fo"lr a number of memory regions defined within the table provides an associated
descriptor. When the processor is operating in a non-secure mode, the non-secure
page table will be referenced in order to obtain relevant descriptors for use in
managing memory accesses, whilst when the processor is operating in secure mode,

descriptors from the secure page table will be used.

The retrieval of descriptors from the relevant page téble into the MMU
procéeds as follows. In the event that the memory access request issued by the core
10 specifies a virtual address, a lookup is performed in the micro-TLB 206 which, -
stores for one of a number of virtual address portions the corresponding physical
address portiohs obtained from the relevant page table. Hence, the micro-TLB 206
will compare a certain portion of the virtual address with the corresponding virtual
address portion stored within th;.e micro-TLB to determine if there is a match. The -
portion compared v_vill_gyip_iéally_bgm.s_qg_ldgawpredetgkrr_rli_ped number of most significant

bits of the virtual address, the number of bits being dependent on the granularity of
the pages within the page table 58. The lookup performed within the micro-TLB 206

"wi_ll‘ typically be relatively quick, since the micro-TLB 206 will only include a

relatively few number of entries, for example eight entries

In the event that there is no match found within the mii;rp-T LB 206, then the

’

memory access request is passed over path 242 to the main TLB 208 which contains a

number of descriptors obtained from the page tables. As will be discussed in more

“detail later, descriptors from both the non-secure page table and the secure page table

can co-exist within the main TLB 208, and each entry within the main TLB has a
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corresponding flag (referred to herein as a domain flag) which is settable to indicate .
whether the correspending descﬁptor in that entry has been obtained from a secure
page table or a non-secure page table. In any embodiments where all secure modes of
operation specify physical addresses directly within their memory access requests, it will
be ai)preciated that there will not be a need for such a flag within the main TLB, as the
main TLB will only store non—secu.re_descriptors.

Within the main TLB 208, a similar lookup process is performed to determine
whether the relevant portion of the virtual address issued within the memory access
request corresponds with any of the virtual address portions associated with
descriptors in the main TLB 208 that are relevant to the particular mode of operation.
Hence, if the core 10 is operating in non-secure mode, only those descriptors within
the main TLB 208 which have been- obtlained, from the non-secure page table will be
checked, whereas if the core 10 is operating in secure mode, only the descriptors

within the main TLB that have been obtained from the secure page table will be

checked.

If there is a hit within the main TLB as a result of that checking process, then
the access control information is extracted from the relevant descriptor and passed
back over path 242. In particular, the virtual address portion and the corresponding
physical address portion of the descriptor will be routed over path 242 to the micro-
TLB 206, for storage in an entry of the micro-TLB, the access permission rights will
be loaded into the access permission logic 202, and the region attributes will be
loaded into the region attribute logic 204. The access permission logic 202 and region
attribute logic 204 may be separate to the micro-TLB,'or may be incorporated within
the micro-TLB.

At this point, the MMU 200 is then able to process the memory access request
since there will now be a hit within the micro-TLB 206. 'Accordingly, the micro-TLB
206 will generate the physical address, which can then be output over path 238 onto
the system bus 40 for routing to the relevant memory, this ‘being either on-chip
memory such as the TCM 36, cache 38, etc, or one of the external memory units
accessible via the external bus interface 42. At the same time, the access penﬁission

logic 202 will determine whether the memory access is allowed, and will issue an
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abort signal back to the core 10 over path 230 if it determines that the core is not
allowed to access the specified memory location in its current mode’ of operatlon For
example, certain portions of memory, whether in secure memory Or NON-S€CUre
memory, may be specified as only being accessible by the core when that core is
operating in supervisor mode, and accordingly if the core 10 is seeking to access such
a memory location when in, for example, user mode, the access permission logic 202
will detect that the core 10 does not currently have the appropriate access rights, and
will issue the abort.'signal over path 230. This will cause the memory access to be
aborted. Finally, the region attribute logic 204 will determine the region attributes for
the particulér memory access, such as whether the access is cacheable, bufferable, etc,
and will issue such signals over path 232, where they will then be used to determine
whether the data the subject of the rhemory access request can be cached, for example
within the cache 38, whether in the event of a write access the write data can be

buffered, etc.

In the event that there was no hit within the main TLB 208, then the
translation table walk logic 210 is used to access the relevant page table 58 in order to
retrieve the required descriptor over path 248, and then pass that descriptor over path
246 to the main TLB 208 for storage therein. The base address for both the non-
secure page table and the secure page table will be stored within registers of CP15 34,
and the current domain in which the processor core 10 is operating, 1.e. secure domain
or nohiéécure"domaiﬁ; will also be set within a régistér of CP15, that domain status
register being set by the monitor mode when a transition occurs between the non-
secure domain and the secure domain, or vice versa. The content of the domain status
register will be referred to herein as the domain bit. Accordingly, if a translation table
walk process needs to be performed, the translation table walk logic 210 will know in
which domain the core 10 is executing, and accordingly which base address to use to
access the relevant table. The virtual address is then used as an offset to the base

address in order to access the appropriate entry within the appropriate page table in

order to obtain the required descriptor.

. Once the descriptor has been retrieved by the translation table walk logic 210,
and placed within the main TLB 208, a hit will then be obtained within the main TLB,

and the earlier described process will be invoked to retrieve the access control
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information, and store it within the micro-TLB 206, the access permission logic 202
and the region attribute logic 204. The memory access can then be actione

MMU 200.

As mentioned earlier, in preferred embodiments, the main TLB 208 can store

'descriptors from both the secure page table and the non-secure page table, but the

memory access requesis are only processed by the MMU 200 once the relevant
information is stored within the micro-TLB 206. In preferred embodifncnis, the
transfer of information between the main "TLB 208 and the micro-TLB 206 is
nionitored by the partition checker 222 located within the MPU 220 to ensure that, in
tl‘m event that the core 10 is operating in a non-secure mode, no access control
information is transferred into the micro-TLB 206 from descriptors in the main TLB
208 if that would cause a physical address to be generated which is within secure

memory.

The memory protection unit is managed by thé secure operating system, which -
is able to set within registers of the CP15 34 partitioning information defining the
partitions between the secure memory and the non-secure memory. The partition
checker 222 is then able to reference that partitioning information in order to
determine whether access control information is being transferred to the micro-TLB
206 which would allow access by the core 10 in a non-secure mode to secure
memory. More particularly, in preferred embodiments, when the core 10 is operating
in a non-secure mode of operation, as indicated by the domain bit set by the monitor
mode within the CP15 domain status register, the partition checker 222 is operable to
monitor via path 244 any physical address portion seeking to be retrieved into the
micro-TLB 206 from the main TLB 208 and to determine whether the physical
address that would then be produced for the virtual address based on that physical

address portion would be within the secure memory. In such circumstances, the

‘ partition checker 222 will issue an abort signal over path 230 to the core 10 to prevent

the memory access from taking place.

It will be appreciated that in addition the partition checker 222 can be afranged.
to actually prevent that physical address portion from being stored in the micro-TLB

206 or alternatively the physical address portion may still be stored within the micro-
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TLB 206, but part of the abort process would be to remove that incorrect physical
address portion from the micro-TLB 206, for example by flushing the micro-TLB
206.

Whenever the core 10 changes via the monitor mode between a non-secure
mode and a secure mode of operation, the monitor mode will change the value of the
domain bit within the CP15 domain stetus register to indicate the domain into which
the processor’s operation is changing. As part of the transfef process between
domains, the micro-TLB 206 will be flushed and accordingly the first memory access
following a transition between secure domain and non-secure domain will produce a
miss in the micro-TLB 206, and require access information to be retrieved from main
TLB 208, either directly, or via retrieval of the relevant descriptor from the relevant

page table.

By the above approach, it will be appreciated that the partition checker 222
will ensure that when the core is operating in the non-secure domain, an abort of a
memory access will be generated if an attempt is made to retrieve into the micro-TLB

206 access control information that would allow access to secure memory.

If in any modes of operation of the processor core 10, the memory access
request is arranged to specify directly a physical address, "then in that mode of
operation the MMU 200 will be disabled, and the physical address will pass over path

236 into the MPU 220. In a secure mode of operation, the access permission logic

-224-and-the-region-attribute logic- 226 will perform.the necessary access permission

and region attribute analysis based on the access permission rights and region
attributes identified for the corresponding regions within the partitioning information
registers within the CP15 34. If the secure memory location seeking to be accessed is
within a part of secure memory only accessible in a certam mode of operatlon for
example secure pnv1leged mode, then an access attempt by the core in a different
mode of operation' for example a secure user mode, will cause the access permission
logic 224 to generate an abort over path 230 to the core in the same way that the
access permission logic 202 of the MMU would have produced an abort in such
circumstances. Similarly, the region attribute logic 226 will generate cacheable and

bufferable signals in the same way that the region attribute logic 204 of the MMU
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would have generated such signals for memory access requests specified with virtual

" addresses. Assuming the access is allowed, the access request wiil then proceed over

path 240 onto the system bus 40, from where it is routed to the appropriéte memory

unit.

For a non-secure access where the access request specifies a physical address,

S WL, W
JEVISS ¥

the access request will be routed via path 236 into the partition checker 222,
will perform partition checking with reference to the partitioning information in the
CI:315 registers 34 in order to determine whether the physical address specifies a
lo":'g:ation within secure memory, in which event the abort signal will again be

génerated over path 230.

The above described processing of the memory management logic will now be
described in more detail with reference to the flow diagrams of Figures 23 and 24.
Figure 23 illustrates the situation in which the program running on the core 10
generates a virtual address, as indicated by step 300. The relevant domain bit within
the CP15 domain status register 34 as set by the monitor mode will indicate whether
the core is currently running in a secure domain or the non-secure domain. In the
event that the core is running in the secure domain, the process branches to step 302,
where a lookup is performed within the micro-TLB 206 to see if the relevant portion
of the virtual address matches with one of the virtual address portions within the
micro-TLB. In the event of a hit at step- 302, the process branches directly to step »

312, where the access permission logic 202 performs the necessary access permission

analysis.__At_step_314,_it_is_then determined whether there is an access permission

violation, and if there is the process proceeds to step 316, where the access permission

logic 202 issues an abort over path 230. Otherwise, in the absence of such an access

permiséion violation, the process proceeds from step 314 to step 318, where the

memory access proceeds. In particular the region attribute logic 204 will output the
necessary cacheable and bufferable attributes over path 232, and the micro-TLB 206 |

will issue the physical address over path 238 as described earlier.

If at step 302 there is a miss in the micro-TLB, then a lookup process is
performed within the main TLB 208 at step 304 to determine whether the required

secure descriptor is present within the main TLB. If not, then a page table walk
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process is executed at step 306, whereby the translation table walk logic 210 obtains
the required descriptor from the secure page table, as described eariier with reference
to Figure 21. The process then proceeds to step 308, or proceeds directly to step 308

from step 304 in the event that the secure descriptor was already in the main TLB 208.

At step 308, it is determined that the main TLB now contains the valid tagged

secure descriptor, and accordingly the process proceeds to step 310, whe

re the micro-
TLB is loaded with the sub-section of the descriptor that contains the physical address
portion. Since the core 10 is currently running in secure mode, there is no need for

the partition checker 222 to perform any partition checking function.

The process then proceeds to step 312 where the remainder of the memory

~access proceeds as described earlier.
i

In the event of a non-secure memory access, the process proceeds from step
300 to step 320, where a lookup pfocess is performed in the micro-TLB 206 to
determine whether the corresponding physical address portion from a non-secure
descriptor is present. If it is, then the process branches directly to step 336, where the
access permission rights are checked by the access permission logic 202. It s
important to note at this point that if the relevant physical address portion is within the
micro-TLB, it is assumed that there is no security violation, since the partition checker
222 effectively polices the information prior to it being stored within the micro-TLB,
such that if the information is within the micro-TLB, it is assumed to be the
appropriate non-secure_information. _Once the access permission has been checked at
step 336, the process proceeds to step 338, where it is determined whether there is any
violation, in which event an access permission fault abort is issued at step 316.
Otherwise, the process proceeds to step 318 where the remainder of the memory

access is performed, as discussed earlier.

In the event that at step 320 no hit was located in the micro-TLB, the process
proceeds to step 322, where a lookup process is performed in the main TLB 208 to

determine whether the relevant non-secure descriptor is present. If not, a page table

- walk process is performed at step 324 by the translation table walk logic 210 in order

to retrieve into the main TLB 208 the necessary non-secure descriptor from the non-
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secure page tableﬁ The process then proceeds to steﬁ 326, or proceeds directly to step
326 from step 322 in the event that a hit within the main TLB 208 occurred at step
322. At step 326, it is determined that the main TLB now contains the valid tagged
non-secure descriptor for the virtual address in question, and then at step 328 the
partition checker 222 checks that the physical address that would be generated from
the virtual address of the memory access requ‘est (given the physical address portion‘
within the descriptor) will point to a location in non-secure memory. Ifnot, i.e. if the
physical address points to a location in secure memory, then at step 330 it is
determined that there is a security violation, and the process proceeds to step 332
V;l%lere a secure/non-secure fault abort is issued by the partition checker 222.

If however the partition checker logic 222 determines that there is no security
violation, the process proceéds to step 334, where the micro-TLB is loaded with the
sub-section of the relevant descriptor that contains the physical address portion,
whereafter at step 336 the memory access is then processed in the earlier described

manner.

The handling of memory access requests that direcﬂy issue a physical address
will now be described with reference to Figure 24. As mentioned earlier, in this
scenario, the MMU 200 will be deactivated, this preferably being achieved by the
setting within a relevant register of the CP15 registers an MMU enable bit, this setting

generate a physical address which will be passed over path 236 into the MPU 220.

_Then, at step 352, the MPU checks permissions to verify that the memory access
Being requested can proceed given the current mode of operation, i.e. user, supervisor,
etc.‘ Furthermore, if the core is operating in non-secure mode, the partition checker
222 will also check at step 352 whether the physical address is within non-secure
memory. Then, at step 354, it is determined whether there is a violation, i.e. whether
the access permission processing has revealed a violation, or if in non-secure mode,
the paﬁitidn checking process has identified a violation. If either of these violations
occurs, then the process proceeds to step 356 where an access permission fault abort is
generated by the MPU 220. It will be appreciated that in certain embodiments there

may be no distinction between the two types of abort, whereas in alternative
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embodiments the abort signal could indicate whether it relates to an access permission

fault or a security fault.

If no violation is detected at step 354, the process proceeds to step 358, where

the memory access to the location identified by the physical address occurs.

In preferred embodiments only the monitor.mode' is arranged to generate
physical addresses directly, and accordingly in all other cases the MMU 200 will be
active and generation of the physical address from the virtual address of the memory
ae:éess request will occur as described earlier. '

Figure 22 illustrates an alternative embodiment of the memory management
16gic in a situation where all memory access requests specify a virtual address, and
accordingly physical addresses are nbt generated directly in any of the modes of
operation. In this scenario, it will be appreciated that a separate MPU 220 is not
required, and instead the partition checker 222 can be incorporated within the MMU
200. This change aside, the processing proceeds in exactly the same manner as

discussed earlier with reference to Figures 21 and 23.

It will be appreciated that various other options are also possible. For example,

assuming memory access requests may be issued by both secure and non-secure

“modes specifying virtual addressés, two MMUs could be provided; one for secure

access requests and one for non-secure access requests, i.e. MPU 220 in Figure 21
could be replaced by a complete MMU.- In such cases, the use of flags with the main
TLB of each MMU to define whether descriptors are secure Or non-secure would not
be needed, as one MMU would store non-secure descriptors in its main TLB, and the
other MMU would store secure descnptors in its main TLB. Of course, the partition
checker would still be required to check whether an access to secure memory is being

attempted whilst the-core is in the non-secure domain.
If, alternatively, all memory access requests directly specified physical

addresses, an alternative implementation might be to use two MPU s, one for secure

access requests and one for non-secure access requests. The MPU used for non-
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secure access requests would have its access requests policed by a partition checker to

ensure accesses to secure memory are not allowed in non-secure modes.

As a further feature which may be provided with either the Figure 21 or the
Figure 22 arrangement, the partition checker 222 could be arranged to perform some
partition checking in order to police the activities of the translation table walk logic
210. In particular, if the core is currently operating in the non-secure domain, then the
partition checker 222 could be arranged to check, whenever the transiation tabie waik
logic 210 is seeking to access a pagé table, that it is accessing the non-secure page
table rather than the secure page table. If a violation is detected, an abort signal
would preferably be generated. Since the translation table walk logic 210 typically
performs the page table lookup by combining a page table base address with certain
bits of the virtual address issued by the memory access request, this partition checking
may involve, for example, checking thaf the translation table walk logic 210 is using a
base address of a non-secure page table rather than a base address of a secure page

table.

Figure 25 illustrates schematically the process performed by the partition
checker 222 when the core 10 is operating in a non-secure mode. It will be
appreciated that in normal operation a descriptor obtained from the non-secure¢ page
table should describe a page mapped in non-secure memory only. However, in the

case of software attack, the descriptor may be tampered with in order that it now

. describes a section that contains both non-secure and secure regions of memory.

Hence, considering the example in Figure 25, the corrupted non-secure descriptor may
cover a page that includes non-secure areas 370, 372, 374 and secure areas 376, 378,
380. If the virtual address issued as part of the memory access request would then
correspond to a physical address in a secure memory region, for ‘example the secure
memory region 376 as illustrated in Figure 25, then the partition checker 222 is
arranged to generate an abort to preveﬁt that access taking place. Hence, even though
the non-secure descriptor has been corrupted in an attempt to gain access to secure
memory, the partition checker 222 prevents the access taking place. In contrast, if the
physicél address that would be derived using this descriptor corresponds to a ﬁon-
secure memory region, for example region 374 as illustrated in Figure 25, then the

access control information loaded into the micro-TLB 206 merely identifies this non-

‘48



10

15

20

25

30

DYC Ref: P15377GB
ARM Ref: P236

secure re'gio.n 374. Hence, accesses within that non-secure memory region 374 can
occur but no accesses into any of the secure regiohs 376, 378 or 380 can occur. Thus,
it can be seen that even though the main TLB 208 may contain descriptors from the
non-secure page table that have been tarhpered with, the micro-TLB will only contain

physical address portions that will enable access to non-secure memory regions.

modes may generate memory access requests specifying virtual addresses, then ihe
memory preferably comprises both a non-secure page table within non-secure
ﬁilemory, and a secure page table within secure memory. When in non-secure mode,
tﬁe non-secure page table will be referenced by the translation table walk logic 210,
whereas when in secure mode, the secure page table will be referenced by the
translation table walk logic 210. Figure 26 illustrates these two page tables. As

shown in Figure 26, the non-secure memory 390, which may for example be within

external memory 56 of Figure 1, includes within it a non-secure page table 395

specified in a CP15 register 34 by reference to a base address 397. Similariy, within
secure memory 400, which again may be within the external memory 56 of Figure 1, a
corresponding secure page table 405 is provided which is specified within a duplicate
CP15 register 34 by a secure page table base address 407. Each descriptor within the
non-secure page table 395 will point to a corresponding non-secure page in non-
secure memory 390, whereas each descriptor within the secure page table 405 will
define a corresponding secure page in the secure memory 400. In addition, as will be

described in more detail later, it is possible for certain areas of memory to be shared

" memory regions 410, which are accessible by both non-secure modes and secure

modes.

Figuré 27 illustrates in more detail the loqkup process performed within the

main TLB 208 in accordance with preferred embodiments. As mentioned earlier, the

" main TLB 208 includes a domain flag 425 which identifies whether the corresponding

descriptor 435 is from the secure page table or the non-secure page table. This

ensures that when a lookup process is performed, only the descriptors relevant to the

- particular domain in which the core 10 is operating will be checked. Figure 27

illustrates an example where the core is running in the secure domain, also referred to

as the secure world. As can be seen from Figure 27, when a main TLB 208 lookup 1s
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performed this will result in the descriptors 440 being ignored, and only the

In accordance with preferred embodiments, an additional process ID flag 430, .
also referred to herein as the ASID flag, is provided to identify descriptors from

process specific page tables. Accordingly, processes P1, P2 and P3 may each have

and further may have

i

dlfferent page tables for non-secure operatlon and secure operation. Furiner, it wili be
appreciated that the processes P1, P2, P3 in the secure domain may be entirely
separate processes to the processes P1, P2, P3 in the non-secure domain.
Accordingly, as shown in Figure 27, in addition to checking the domain when a main

TLB lookup 208 is required, the ASID flag is also checked.

Accordingly, in the exémple in Figure 27 where in the secure domain, process
P1 is executing, this lookup process identifies just the two entries 450 within the main
TLB 208, and a hit or miss is then generated dependent on whether the virtual address
portion within those two descriptors matches with the corresponding portion of the
virtual address issued by the memory access request. If it does, then the relevant
access control information is extracted and passed to the micro-TLB 206, the access
permission logic 202 and the region attribute logic 204. Otherwise, a miss occurs, and
the translation table walk logic 210 is used to retrieved into the main TLB 208 the
required descriptor from the page table provided-for secure process P1. As will be
appreciated by those skilled in the art, there are many techniques for managing the
content of a TLB, and accordingly when a new. descriptor is retrieved for storage in
the main TLB 208, and the main TLB is already full, any one of a number of known

techniques may be used to determine which descriptor to evict from the main TLB to

make room for the new ciescriptor, for example least recently used approaches, etc.

' It will be appreciated that the secure kernel used in secure modes of operation
may be developed entirely separately to the non-secure operating system. However,
in certain cases the secure kernel and the non-secure opgrating.system development
may be closely linked, and in such situations it may be appropriate to allow secure
applications to use the non-secure descriptors. Indeed, this will allow the secure

applications to have direct access to non-secure data (for sharir;g) by knowing only
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the virtual address. This of course presumes that the secure virtual mapping and the
non-secure virtual mapping are exciusive for a particular ASD In such scenarios, the
tag introduced previously (i.e; the domain flag) to distinguish between secure and
non-secure descriptors will not be needed. The lookup in the TLB is instead then

performed with all of descriptors available.

TLB, and the earlier described configuration with separate secure and non-secure
descriptors, -can be set by a particular bit provided within the CP15 control registers.
In:preferred embodiments, this bit would only be set by the secure kernel.

\

In embodiments where the secure application were directly allowed to use a

- non-secure virtual address, it would be possible to make a non-secure stack pointer

available from the secure domain. This can be done by copying a non-secure register
value identifying the non-secure stack pointer into a dedicated register within the
CP15 registers 34. This will then enable the non-secure application to pass

parameters via the stack according to a scheme understood by the secure application.

As described earlier, the memory may be partitioned into non-secure and
secure parts, and this partitioning is controlled by the secure kernel using the CP15
registers 34 dedicated to the partition checker 222. The basic partitioning approach is
based--on--region--aceess-—permissions- as—definable - in-- typical - MPU -devices.

Accordingly, the memory is divided into regions, and each region is preferably

_defined with its base address, size, memory_attributes and access permissions.

Further, when overlapping regions are programmed, the attributes of the upper region
take highest priority. Additionally, in accordance with preferred embodiments of the
present invention, a new region attribute is providéd to define whether that
corresponding region is in secure mémory or in non-secure memory. This new region
attribute is used by thé'secure kernel to define the part of the memory that is to be

protected as secure memory.

At the boot stage, a first partition is performed as illustrated in Figure 28. This
initial partition will determine the amount of memory 460 allocated to the non-secure

world, non-secure operating system and non-secure applications. This amount .
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corresponds to the non-secure region defined in the partition. This information will
then be used by the non-secure operating system for its memory management. The
rest of the memory 462, 464, which is defined as secure, is unknown by the non-
secure operating system. In order to protect integrity in the non-secure world, the
non-secure memory may be oro grammed with access permission for secure privileged

modes only. Hence, secure applications will not corrupt the non-secure ones. As can

o

¢ seen from Figure 28, following this boot stage partition, memory 460 is available
for use by the non-secure operating sysiem, memory 462 is avaiiabie for use by ile

secure kernel, and memory 464 is available for use by secure applications.

Once the boot stage partition has been performed, memory mapping of the
“non-secure memory 460 is handled by the non-secure operatiﬁg system using the
MMU 200, and accordingly a series of non-secure pages can be defined in the usual

fnanner. This is illustrated in Figure 29.

If a secure application needs to share memory with a non-secure application,
the secure kemnel can change the ﬁghts of a part of the memory to transfer artificially
data from one domain to the other. Hence, as illustrated in Figure 30: the secure
kernel can, after checking the integrity of a non-secure page, change the rights of that

page such that it becomes a secure page 466 accessible as shared memory.

i -~-Whef1» the partition-of-the-memory-is changed, the micro-TLB 206 needs to be

flushed. Hence, in this scenario, when a non-secure access subsequently occurs, 2
__miss will occur in the micro-TLB 206, and accordingly a new descriptor will be
loaded from the main TLB 208. This new descriptor will subsequently be checked by
the partition checker 222 of the MPU as it is attempted to retrieve it into the micro-
TLB 206, and so will be consistent with the new partition of the memory.

In pre_ferred embodiments, the cache 38 is virtual-indexed and physical-
tagged. Accordingly, when an access is performed in the cache 38, a lookup will have .
already been performed in the micro-TLB 206 first, and accordingly access
permissions, especially secure and non-secure. permissions, will have been checked.
Accordingly, sécure data cannot be stored in the cache 38 by non-secure applications.

Access to the cache 38 is under the control’of the partition checking performed by the
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partition checker 222, and accordingly no access to secure data can be performed in

non-secure mode.

However, one problem that could occur would be for an application in the
non-secure domain to be able to use the cache operations register to invalidate, clean,
or flush the cache. It needs to be ensured that such operations could not affect the
security of the system. For €xample, if the non-secure operating system were to
invalidate the cache 38 without cleaning it, any secure dirty data must be wniien io
the external memory before being replaced. Preferably, secure data is tagged in the

cache, and accordingly can be dealt with differently if desired.

In preferred embodiments, if an “invalidate line by address” operation 1is

;executed by a non-secure program, the physical address is checked by the partition

checker 222, and if the cache line is a secure cache line, the operation becomes a

“clean and invalidate” operation, thereby ensuring that the security of the system is
maintained.  Further, in preferred embodiments, all “invalidate line by »index”
operations that are executed by a non-secure program become ‘“clean and invalidate
by index” operations. Similarly, all “invalidate all” operations executed by a non--

secure program become ““clean and invalidate all” operations.

Furthermore, with reference to Figure 1, any access to the TCM 36 by the
DMA 32 is controlled by the micro-TLB 206. -Hence, when the DMA. 32 performs a
lookup in the TLB to translate its virtual address into a physical one, the earlier
described flags that were added in the main TLB allow the required security checking
to be performed, just as if the access request had been issued by the core 10. Further,
as will be discussed later, a replica partition checker is coupled to the external bus 70,
preferably being located within the arbiter/decoder block 54, such that if the DMA 32
directly accesses the memory'éoupled to the external bus 70 via the externai bus
interface 42, the replicar partition checker connected to that external bus checks the
validity of the access. ' Furthermore, in certain preferred embodiments, it would be
possible to add a bit to the CP15 registers 34 to define whether the DMA controller 32
can be used in the non-secure domain, this bit only being allowed to bé set by the

secure kernel when operating in a privileged mode.
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Cohsidering the TCM 36, if secure data is to placed within the TCM 36, this
must be handied with care. As an example, a scenario could be imagined where the
non-secure operating system programs the physical address range for the TCM
memory 36 so that it overlaps an extémal secure memory part. If the mode of
operation then changes to a secure mode, the secﬁre kernel may cause data to be
stored in that voverlapping part, and typically thie data would be stored in the TCM 36,

7o)\

since ihe TClv

=a

36 will typically have a higher priority than the external memory. If
the non-secure operating system were then to change the setting of the physical
address space for the TCM 36 so that the previous secure region is now mapped in a
nb%l-secure physical area of memory, it will be appreciated that the non-secure
op;erating system can then access the secure data, since the partition checker will see
the area as non-secure and.won’t assert an abort. Hence, to summarise, if the TCM is
configured to act as normal local RAM and not as SmartCache, it may be possible for
the non-secure operating system to read secure world data if it can move the TCM
base register to non-secure physical address.

To prevent this kind of scenario, a control bit is in preferred embodiments
provided -within the CP15 registers 34 which is only accessible in secure privilege
modes of operation, and provides two possible configurations. In a first
configuration, this control bit is set to “1”, in which event the TCM can only be
controlled by the secure privilege modes. Hence, any non-secure access attempted to
the TCM control registers within the CP15 34 will cause an undefined instruction
exception to be entered. Thus, in this first configuration, both secure modes and non-
secure modes can ﬁse the TCM, but the TCM is controlled only by the secure
privilege mode. In the second configuration, the control bit is set to “0”, in which
event the TCM can be controlled by the non-secure operating system. In this case, the

TCM is only used by the non-secure applications. No secure data can be stored to or

" loaded from the TCM. Hence, when a secure access is performed, no look-up is-

performed within the TCM to see if the address matched the TCM address range.

By default, it is envisaged that the TCM would be used only by non-secure
operating systems, as in this scenario the non-secure operating system would not need

to be changed.
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As mentioned earlier, in addition to the provision of the partition checker 222
within the MPU 220, preferred embodiments of the present invention also provide an
analogous partition checking block coupled to the external bus 70, this additional
partition checker being used to pohce accesses to memory by other master devices,
for example the digital signal processor (DSP) 50, the DMA controller 52 coupled

directly to the external bus, the DMA controller 32 connectable to the external bus via

‘ the external bus interface 42, etc. As mentioned earlier, the entire memory system can

consist of several memory units, and a variety of these may exist on the externai bus
70, for exarnple the external memory 56, boot ROM 44, or indeed buffers or registers
48, 62, 66 within peripheral devices such as the screen driver 46, /O interface 60, key
storage unit 64, etc. Furthermore, different parts of the memory system may need to
be defined as secure memory, for example it may be desired that the key buffer 66
within the key storage unit 64 should be treated as secure memory. If an access to
such secure memory were to be attempted by a device coupled to the external bus,
then it is clear that the earlier described memory management logic 30 provided .

within the chip containing the core 10 would not be able to police such accesses.

Figure 31 illustrates how the additional partition checker 492 coupled to the
external bus, also referred to herein as the device bus, is used. The external bus would
typically be arranged such that whenever memory access requests were issued onto

that external bus by devices, such as devices 470; 472, those memory access requests

““would also include certain signals on the external bus defining the mode of operation,

for example privileged, user, etc. In accordance with preferred embodiments of the

——present-invention -the-memory..access. request also involves issuance of a domain

signal ento the external bus to identify whether the device is operating in secure mode

or non-secure mode. This domain signal is preferably issued at the hardware level,

.and in preferred embodiments a device capable of operating in secure or non-secure

domains will include a predeterrmned pin for outputting the domam signal onto path
490 within the external bus. For the purpose of 1llustrat10n “this path 490 is shown
separately to the other signal paths 488 on the external bus.

This domain signal, also referred to herein as the “S bit”” will identify whether
the device issuing the memory access request 1s operating in secure domain or non- .

secure domain, and this information will be received by the partition checker 492
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coupled to the external bus. The partition checker 492 will also have access to the
partitioning information identifying which regions of memory are secure or non-
secure, and accordingly can be arranged to only allow a device to have access to 2

secure part of memory if the S bit is asserted to identify a secure mode of operation.

By default, it is envisaged that the S bit would be unasserted, and accordingly
a pre-existing non-secure device, such as device 472 illustrated in Figure 31, would
not output an asserted S bit and accordingly would never be granted access by the
partltlon checker 492 to any secure parts of memory, whether that be within registers
or huffers 482, 486 within the screen driver 480, the VO mterface 484, or within the

external memory 474.

For the sake of 'illustration, the arbiter block 476 used to arbitrate between
memory access requests issued by master devices, such as devices 470, 472, is
illustrated separately to the decoder 478 used to determme the appropriate memory
device to service the memory access request, and separate from the partition checker
492. However, it will be appreciated that one or more of these components may be

integrated within the same unit if desired.

" Figure 32 illustrates an alternative embodiment, in which a partition checker
492 is not prov1ded and instead each memory device 474, 480, 484 is arranged to

pohce its own memory access dependent on the value of the S bit. ‘Accordingly, if

device 470 were to assert a memory access request in non-secure mode to a register

482 within the 's'cre‘en‘driver*‘4‘804£hat-was-marked" as-secure memory, then the screen

driver 480 would determine that the S bit was not asserted, and would not process the
memory access request. Accordingly, it is env1saged that with appropriate design of
the various memory devices, it may be possible to- avoid the need for a partition

checker 492 to be provided separately on the external bus.

Figure 33 shows different modes and applications running on a processor. The
dashed lines indicate how different modes and/or applications can be separated and
isolated from one another during monitoﬁng of the processor according to an

embodiment of the present invention.
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The ability to monitor a processor to locate possible faults and discover why
an application is not performing as expected is extremely useful and many processors
provide such functions. The monitoring can be performed in a variety of ways

including debug and trace functions.

In the processor according to the present technique debug can operate in

Thaoans mndoc are
10850 IHUUTs <

O

several modes inciuding hait debug mode and monitor debug mode.
ihtrusive and cause the program running at the time to be stopped. In hait debug
mode, when a breakpoint or watchpoint occurs, the core is stopped and isolated from
the rest of the system and the core enters debug state. On entry the core is halted, the
pipeline is flushed and no instructions are pre-fetched. The PC is frozen and any
interrupts (IRQ and FIQ) are ignored. It is then possible to examine the core internal
state (via the JTAG serial interface) as well as.the state of the memory system. This
étate is invasive to program execution, as it is possible to modify current mode,
change register contents, etc. Once Debug is terminated, the core exits from the
Debug Staté by scanning in the Restart instruction through the Debug TAP (test

access port). Then the program resumes execution.

In monitor debug mode, a breakpoint or watchpoint causes the core to enter
abort mode, taking prefetch or Data Abort vectors respectively. In this case, the core
is still in a functional mode and is not stopped as it is in Halt debug. mode. The abort
handler communicates with—a--debugger application -to -access processor and
coprocessor state or dump memory. A debug monitor program interfaces between the

debug hardware and the software debugger. If bit 11 of the debug status and control

_register DSCR is set (see later), interrupts (FIQ and IRQ) can be inhibited. In monitor

debug mode, vector catching is disabled on Data Aborts and Prefetch Aborts to avoid

~ the processor being forced into an unrecoverable state as a result of the aborts that are

generated for the monitor debug mode. It should be noted that monitor debug mode is
a type of debug mode and is not related to monitor mode of the processor which i is the

mode that supervises switching between secure world and non-secure world.

Debug can provide a snapshot of the state of a processor at a certain moment.

It does this by noting the values in the various registers at the moment that a debug
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initiation request is received. These values are recorded on a scan chain (541, 544 of

Figure 41) and they are then serially output using a JTAG coniroiier {(i8 or Figure 1).

An alternative way of monitoring the core is by trace. Trace is not intrusive
5 and records subsequent states as the core continues to oﬁerate. Trace runs on an
embedded trace macrocell (ETM) 22, 26 of Figure 1. The ETM has a trace port

through which the trace information 1s export {ed, this is then analysed by an externa:

3

trace port analyser. :

10 ’ The processor of embodiments of the present technique operates in two
séparate domains, in the embodiments described these domains comprise secure and
non-secure domains. However, for the purposes of the monitoring functions, it will
be clear to the skilled person that these domains can be any two domains between
which data should not leak. Embodiments of the present technique are concerned

15 with preventmg leakage of data between the two domains and monitoring functions

such as debug and trace which are conventionally allowed access to the whole system

are a potential source of data leakage between the domains.

‘In the example given above of a secure and non-secure domain or world,

20  secure data must not be available to the non-secure world. Furthermore, if debug is
pvermitted, in secure world, it may be advantageous for some of the data within secure
world to be restricted or hidden. The hashed lines in Figure 33 shows some examples

of possible ways to segment data access and provide different levels of granularity. In
——Figure 33,- ‘monitor _.mode._is_shown_by. block 500 and is the most secure of all the

25  modes and controls switching between secure and non- -secure worlds. Below monitor
mode 500 there is a supervisor mode, this comprises secure supervisor mode 510 and
non-secure supervisor mode 520. Then there is non-secure user mode having
applications 522 and 524 and secure user mode with applications 512 514 and 516.

The monitoring modes (debug and trace) can be controlled to only monitor non-secure

30 mode (to the left of hashed line 501). Altemnatively the non-secure domain or world
- and the secure user mode may be allowed to be monitored (left of 501 and the portion

- right of 501 that lies below 502). In a further embodiment the non-secure world and
certain applications running in the secure user domain may be allowed, in this case

further segmentation by hashed lines 503 occurs. Such divisions help prevent leakage
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of secure data between different users who may be running the different applications.
In some controlled cases monitoring of the entire system may be allowed. According
to the granularity required the following parts of the core need to have their access

controlled during monitoring functions.

There are four registers that can be set on a Debug event; the instruction Fault
Status Regisier (IFSR), Daia Fault Status Register (DFSR), Fauit Address Register
(FAR), and Imstruction Fault Address Register (IFAR). These registers should be
ﬂ\:xshed in some embodiments when going from secure world to non-secure world to
a'\'l";;oid any leak of data.

PC sample register: The Debug TAP can access the PC through scan chain 7.
When debugging in secure world, that value may be masked depending on the debug
granularity chosen in secure world. It is important that non-secure world, or non-
secure world plus secure user applications cannot get any value of the PC while the

core is running in the secure world.

TLB entries: Using CP15 itis pc;ssible to réad micro TLB entries and read and
write main TLB entries. We can also control main TLB and micro TLB loading and
matching.. This kind of operation must be strictly controlled, particularly if secure
thread-aware debug requife's assistance of the MMU/MPU.

Performance Monitor Control register: The performance control register gives
information_on_the_cache_misses, micro_TLB misses, external m)emory requests,
branch instruction executed, etc. Non-secure world should not have access to this
data, even in Debug State. The counters should be operable in secure world e\}cn if

debug is disabled in secure world.

Debugging in cache system: Debugging must be non-intrusive in a cached .
system. It is important is to keep coherency between cache and external memory.
The Cache can be invalidated using CP15, or the cache can be forced to be write-
through in. all regions. In any case, allowing the modification of cache thaviour n

debug can be a security weakness and should be controlled.
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Endianness: Non-secure world or secure user applications that can access to
debug should not be allowed to change endianness. Changing the encnanness couid
cause the secure kernel to malfunction. Endlanness access is prohibited in debug,

according to the granularity.

Access of the monitoring functions to portions of the core can be controlled at
initiation of the monitoring function. Debug and trace are initialised in a varicty of
ways. Embodiments of the present technique control the access of the monitoring
function to certain secure portions of the core by only allowing initialisation under

certain conditions.

Embodiments of the present technique seek to restrict entry into monitoring
functions with the following granularity:

By controlling seperately intrusive and observable (trace) debug;

By allowing debug entry in secure user mode only or in the whole secure
world; ]

By allowing debug in secure user mode only and moreover taking account of

the thread ID (application running).

In order to control the initiation of a monitoring function it is important to be
aware of how the functions can be initiated. Figure 34 shows a table illustrating the
possible ways of initiating a monitoring function, the type of monitoring function that

is initiated and the way that such an initiation instruction can be pro grafnmed.

Generally, these monitoring instructions can be entered via software or via
hardware, i.e. via the JTAG controller In order to control the initiation of monitoring
functiohs, control values are used. These comprise enable bits which are condition
dependent and thus, if particular condition is present, monitoring is only allowed to
start if the enable bit is set. These bits are stored on a secure register CP14 (debug
and status control register, DSCR), which is located in ICE 530 (see Figure 41).

In a preferred embodiment there are four bits that enable/disable intrusive and
observable debug, these comprise a secure debug enable bit, a secure trace enable bit,

a secure user-mode enable bit and a secure thread aware enable bit. These control
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values ser've‘ to provide a degree of controllable granularity for the monitoring
function and as such can help stop leakage of data from a particular domain. Figure
35 provides a summary of these bits and how they can be accessed.

-

These control bits are stored in a register in the secure domain and access to

this register is limited to three possibilities. Software access is provided via ARM

coprocessor MRC/MCR instructions and. these are only allowed from the secure
supervisor mode. Alternatively, software access can be provided from any other
mode with the use of an authentication code. A further alternative relates more to
hé%dware access and involves the instructions being written via an input port on the
JTAG. In addition to being used to input control values relating to the availability of
monitoring functions, this input port can be used to -input control values relating to

other functions of the processor.
Further details relating to the scan chain and JTAG are given below.

Register logic cell

Everyvintcgrated circuit (IC) consists of two kind of logic: -
= Combinatory logic cells; like AND, OR, INV gates. Such gates or combination of
such gates is used to calculate Boolean expressions accbrding to one or several

input signals.

= Register logic cells; like LATCH, FLIP-FLOP. Such cells are used to memorize

any signal value. Figure 36 shows a positive-edge triggered FLIP-FLOP view:
.When positive-edge event occurs on the clock signal (CK), the output (Q)
received the value of the input (D); otherwise the output (Q) keeps its value in

memory.

Scan chain cell

For test or debug purpose, it is required to bypass functional access of register
logic cells and to have access directly to the contents of the register logic cells. Thus

register cells are integrated in a scan chain cell as shown in Figure 37.

61



10

15

20

25

30

- DYC Ref: P15377GB

ARM Ref: P236

In functional mode, SE (Scan Enable) is clear and the register cell works as a

single register cell. In test or debug mode, SE is set and input data can come from SI -

input (Scan In) instead of D input..
Scan chain
All scan chain cells are chained in scan chain as shown in figure 38.

In functional mode, SE is clear and all register cells can be accessed normally
and interact with other logic of the circuit. In Test or Debug mode, SE is set and all
registers are chained between each other in a scan chain. Data can come from the first
scan chain cell and can be shifted through any other scan chain cell, at the cadence of

'

each clock cycle. Data can be shifted out also to see the contents of the registers.

TAP controllér

A debug TAP controller is used to handle several scan chains. The TAP
controller can select a particular scan chain: it connects “Scan In” and “Scan Out”
signals to that particular scan-chain. Then data can be scanned into the chain, shifted,
or scanned out. The TAP contfol}er is controlled externally by a JTAG port interface.
Figure 39 schematically illustrates a TAP controller

JTAG Selective Disable Scan Chain Cell

" For securit}} reasons, some registers might not be accessible by scan chain,
even in debug or test mode. A new input called JADI (J TAG Access Disable) can
allow removal dynamically or statically of a scan chain cell from a whole scan chain,
without modifying the scan chaiﬁ structure in the integratéd circuit. Figures 40A and

B schematically show this input.
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If JADI is inactive (JADI = 0), whether in functional or test or debug mode,
the scan chain works as usual. If JADI is active (JADI = 1), and if we are in test or
debug mode, some scan chain cells (chosen by designer), may be “removed” from the
scan chain structure. In order to keep the same number of scan-chain cell, the JTAG
Selective Disable Scan Chain Cell use a bypass register. Note that Scan Out (SC) and |

scan chain cell output (Q) are now different.

Figure 41 schematically shows the processor including parts of the JTAG. In
normal operation instruction memory 550 communicates with the core and can under
c¢11a1n circumstances also communicate with register CP14 and reset the control

values This is generally only allowable from secure supervisor mode.

" When debug is initiated instructions are input via debug TAP 580 and it is
these that control the core. The core in debug runs in a step by step mode. Debug
TAP has access to CP14 via the core (in dependence upon an access control signal
input on the JSDAEN pin shown as JADI pin, JTAG ACCESS DISABLE INPUT in

Figure 40) and the control values can also be reset in this way.

Access to the CP14 register via debug TAP 580 is controlled by an access
control signal JISDAEN. This is ananged so that in order for access and in particular
write access to be allowed JSDAEN must be set high. During board stage when the
whole processor is being verified, JSDAEN is set high and debug is enabled on the
whole system. Once the system has been checked, the JSDAEN pin can be tled to
ground;-this means-that access to the control values that enable debug in secure mode
is now not available via Debug TAP 580. Generally processors in productlon mode
have JSDAEN tied to ground. Access to the control values is thus, only available via

the software route via instruction memory 550. Access via this route is limited to

“ secure supervisor mode or to another mode provided an authentication code is given

(see Figure 42).
It should be noted that by default debug (intrusive and observable — tr'ace) are

only available in non-secure world. - To enable them to be available in secure world

the control value enable bits need to be set.

63



10

15

20

25

30

DYC Ref: P15377GB
ARM Ref: P236

The advantages of this are thét debug can always be initiated by users to run in
non-secure world. Thus, although access to secure world is not generally availabie to
users in debug this may not be a problem in many cases because access to this world
is limited and secure world has been fully verified at board stage prior to being made
available. Itis thereforc foreseen that in many cases debugging of the secure world
will not be necessary. A secure supervisor can still initiate debug via the software

route of writing CP14 if necessary.

Figure 42 schematically shows the control of debug initialisation. In this
figure a portion of the core_600 comprises a storage _élement 601 (which may be a
CP15 register as previously discussed) in which is stored a secure status bit S
indicative of whether the system is in secure world or not. Core 600 also comprises a
register 602 comprising bits indicative of the mode that the processor is running in,
for example user mode, and a register 603 providing a context identifier that identifies

the application or thread that is currently running on the core.

When a breakpoint is reached comparator 610, which compares a breakpoint
stored on register 61 1with the address of the core stored in register 612, sends a signal
to control logic 620. Control logic 620 looks at the secure state S, the mode 602 and
the thread (context identifier) 603 and compares it with the control values and
condition indicators stored on register CP14. If the system is not operating in secure
world, then a “enter debug”-signal-will-be output-at 630. If however, the system is
operating in secure world, the control loglc 620 will look at the mode 602, and if it is
1n user mode will check to see if user mode enable and debug enable bits are set. If
they are then debug ‘will be initialised provided that a thread aware bit has not ‘been

imt;ahsed: The above illustrates the hierarchical nature of the control values.

The thread aware portion of the monitoring control is also shown

schematically in Figure 42 along with how the control value stored in register CP14

can only be changed from secure supervisor mode-(in this embodiment the processor
is in production stage and JSDAEN is tied to ground). From a secure user mode,

secure supervisor mode can be entered using an authentication code and then the

control value can be set in CP14.

64



10

- 15

20

25

30 .

DYC Ref: P15377GB
ARM Ref: P236

Control logic 620 outputs an “enter debug” signal when address compafator
610 indicates that a breakpoint has been reached provided thread comparator 640
shows that debug is allowable for that thread. This assumes that the thread aware
initialisation bit is set in CP14. If the thread aware initialisation bit is set following a -
breakpoint, debug or trace can only be entered if address and context identifiers match
those indicated in the breakpoint and in the allowable thread indicator. Following
initiation of a monitoring function, the capture of diagnostic data wiii oniy continue
while the context identifier is detected by comparator 640 as an allowed thread.
When a context identifier shows that the application running is not an allowed one,

then the capture of diagnostic data is suppressed.

It should be noted that in the preferred embodiment, there is some hierarchy

| within the granularity. In effect the secure debug or trace enable bit is at the top,

followed by the secure user-mode enable bit and lastly comes the secure thread aware

enable bit. This is illustrated in Figures 43A and 43B (see below).

The control values held in the “Debug and Status Control” register (CP14)

~ control secure debug granularity according to the domain, the mode and the executing

thread. It is on top of secure supervisor mode. Once the “Debug and Status Control”

~ register CP14 is configured, it’s up to secure supervisor mode to program the

corresponding breakpoints, watchpoints, etc to make the core enter Debug State.

Figure 43A shows a summary of the secure debug granularity for intrusive

-debug-Default values-at reset-are represented in grey colour.

It is the same for debug granularity concerning observable debug. Figure 43B

shows a summary of secure debug granularity in this case, here default values at reset

are also represented in grey colour.

Note that Secure user-mode debug enable bit and Secure thread-aware debug

enable bit are commonly used for intrusive and observable debug.

A thread aware initialisation bit is stored in register CP14 and indicates if

granularity by application is required. If the thread aware bit has been initialised, the
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control logic will further check that the application identifier or thread 603 is one
indicated in the thread aware controil vaiue, if it is, then debug will be initiaiised. if
either of the user mode or debug enable bits are not set or the thread aware bit is set

and the application running is not one indicated in the thread aware control value, then

the breakpoint will be ignored and the core will continue doing what it was doing and

debug will not be initialised.

In addition to controlling initialisation of monitoring functions, the capture of
diagnostic data during a monitor function can also be controlled in a similar way. In
6éder to do this the core must continue to consider both the control values, i.e. the
eﬁable bits stored in register CP14 and the conditions to which they relate during

operation of the monitoriﬁg function.

Figure 44 shows schematically granularity of a monitoring function while it is

\ running. In this case region A relates to a region in which it is permissible to capture

diagnostic data and region B relates to region in which control values stored in CP14

indicate that it is not possible to capture diagnostic data.

Thus, when debug is running and a program is operating in region A,
diagnostic data is output in a step-by-step fashion during debug. When operation
switches to Region B, where the capture of diagnostic data is not allowed, debug no -
longer proceeds in a step by step fashion, rather it proceeds atomically and no data is-
captured. This continues until operation of the program re-enters region A whereupon'
the capture of diagnostic data starts again and debug continues running in a step-by-

step fashion.

In the above embodiment, if secure domain is not enabled, a SMI instruction is

always seen as an atomic event and the capture of diagnostic data is suppressed.

Furthermore, if the thread aware initialisation bit is set then granularity of the

monitoring function during operation with respect to application also occurs.
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With regard to observable debug or trace, this is done by ETM and is entirely.
independent of debug. When trace is enabled ETM works as usual and when it is
disabled, ETM hides trace in the secure world, or part of the secure world depending
on the granularity chosen. One way to avoid ETM capturing and tracing diagnostic
data in the secure domain when this is not enabled is to stall ETM when the S-bit is
high. This caﬁ be done by combining the S-bit with the ETMPWRDOWN signal, so
that the ETM values are held at their last values when the core enters secure worid.
The ETM should thus trace a SMI instruction and then be stalled until the core returns

to non-secure world. Thus, the ETM would only see non-secure activity.

A summary of some of the different monitoring functions and their granularity .
is given below.

Intrusive debug at board stage

At board stage when the JSDAEN pin is not tied, there is the ability to enable
debug everywhere before starting any boot session. Similarly, if we are in secure
supervisor mode we have similar rights.

If we initialise debug in halt debug mode all registers are accessible (non-
secure and secure register banks) and the whole memory can be dumped, except the

bits dedicated to control debug.

Debug halt mode can be entered from whatever mode and from whatever

——domain—Breakpoints and-watchpeints-can be set in secure or in non-secure memory.

In debug state, it is possible to enter secure world by simply changing the S bit via an

MCR instruction.

As debug mode can be entered when secure exceptions occur, the vector trap
register is extended with new bits which are; '

SMI vector trapping enable

Secure data abort vector trapping enable

Secure prefetch abort vector trapping enable

Secure undefined vector trapping enable.
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m monitor debug mode, if we allow debug everywhere, even when an SMl s

called in non-secure world, it is possible to enter secure world in step-by-step debug.

When a breakpoint occurs in secure domain, the secure abort handler is operable to

dump secure register bank and secure memory.

The two abort handlers in secure and in non-secure world give their
information to the debugger application so that debugger window (on the associated
debug controlling PC) can show the register state in both secure and non-secure

worlds.

i
'

Figure 45A shows what happens when the core is configured in monitor debug
mode and debug is enabled in secure world. Figure 45B shows what happens when
the core is configured in monitor debug mode and the debug is disabled in secure

world. This later process will be described below.

Intrusive debug at production stage

In production stage when JSDAEN is tied and debug is restricted to non-
secure world, unless the secure supervisor determines otherwise, then the table shown
in Figure 45B shows what happens. In this case SMI should always be considered as
an atomic instruction, so that secure functions are always finished before entering

<
debug state.

Entering debug halt mode is subject to the following restrictions:

External debug request or internal debug request is taken into account in non-
secure world only. If EDBGRQ (external debug request) is asserted while in secure
world, the core enters debug halt mode once secure function is terminated and the

core is returned in non-secure world.

Programming a breakpoint or watchpoint on secure memory has no effect and

the core is not stopped when the programmed address matches.

Vector Trap Register (details of this are given below) concerns non-secure

exceptions only. All extended trapping enable bits explained before have no effect.
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Once in halt debug mode the following restrictions apply:

S bit cannot be changed to force secure world entry, unless secure debug is
enabled.

Mode bits can not be changed if debug is permitted in secure supervisor mode
only. '

Dedicated bits that controi secure debug cannot be changed.

If a SMI is loaded and executed (with system speed access), the core re-enters

debug state only when secure function is completely executed.

In monitor debug mode because monitoring cannot occur in secure world, the
secure abort handler does not need to support a debug monitor programme. In non
secure world, step-by-step is possible but whenever an SMI is executed secure
function is executed entirely in other words an XWSI only “step-over” is allowed
while “‘step-in” and “step-over” are possible on all other instructions. XWSI is thus

considered an atomic instruction.
Once secure debug is disabled, we have the following restrictions:

Before entering monitor mode: _ )

Breakpoints and watchpoints are only taken into account in non-secure world.
If bit S is set, breakpoints/watchpoints are bypassed. Note that watchpoints units are
also accessible with MCR/MRC (CP14) which is not a security.issue as.

breakpoint/watchpoint has no effect in secure memory.

BKPT are normally used to replace the instruction on which breakpoint is set.
This supposes to overwrite this instruction in memory by BKPT instruction, which

will be possible only in non-secure mode.

Vector Trap Register concerns non-secure exceptions only. All extended
trapping enable bits explained before have no effect. Data abort and Pre-fetch abort
enable bits should be disabled to avoid the processor being forced in to an

unrecoverable state.

69



10

15

20

25

30

DYC Ref: P15377GB : . ; .
ARM Ref: P236

Via JTAG, we have the same restrictions as for halt mode (S bit cannot be

modified, etc)

Once in monitor mode (non-secure abort rhode)
The non-secure abort handler can dump non-secure world and has no visibility
on secure banked registers as well as secure memory.
‘Executes secure functions with atomic SMI instruction
S bit cannot be changed to force secure world entry.
Mode bits can not be changed if debug is permitted in secure supervisor mode

onziy.

Note that if an external debug request (EDBGRQ) occurs,

In non-secure world, the core terminates the current instruction and enters then
immediately debug state (in halt rnode).

In secure world, the core terminates the current function and enters the Debug

State when it has returned in non-secure world.

The new debug requirements imply some modifications in core hardware. The
S bit must be carefully controlled, and the secure bit must not be inserted in a scan

chain for security reason.

In summary, in debug, mode bits can be altered only if debug is enabled in
secure supervisor mode. It will prevent anybody that has access to debug in the secure

domain to have access to all secure world by altering the system (modifying TBL

_entries, etc). In that way each thread can debug its own code, and only its own code.

The secure kernel must be kept safe. Thus when entering debug while the core is

running in non-secure world, mode bits can only be altered as before.

Embodiménts of the technique use anew vector trap register. If one of the
bits in this register is set high and the corresponding vector triggers, the processor
enters debug state as if a breakpoint has been set on an instruptibn fetch from the
relevant exception vector. The behaviour of these bits may be different according to

the value of "Debug in Secure world Enable' bit in debug control register.
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The new vector trap register comprises the following bits: D_s_abort,

P_s_abort, S_undef, SMI, FIQ, IRQ, Unaligned, D_abort, P_abort, SWI and Undef.

D_s_abort bit: should only be set when debug is enabled in secure world and

when debug is configured in halt debug mode. In monitor debug mode, this bit
should never bit set. If debug in secure world is disabled, this bit has no effect

whatever its vaiue.

P_s_abort bit: same as D_s_abort bit.

_+ S_undef bit: should only be set when debug is enable in secure world. If debug in

secure world is disabled, this bit has no effect whatever its value is.

SMI bit: should only be set when debug is enabled in secure world. If debug in

secure world is disabled, this bit has no effect whatever its value is.

FIQ, TIRQ, D_abort, P_abort, SWI, undef bits: correspond to non-secure
exceptions, so they are valid even if debug in secure world is disabled. Note that
D _abort and P_abort should not be asserted high in monitor mode.

Reset bit: as we enter secure world when reset occurs, this bit is valid only when

debug in secure world is enabled, otherwise it has no effect.

Although a particular embodiment of the invention has been described herein,
it will be apparent that the invention is not limited thereto, and that many
modifications and additions may be made within the scope of the invention. For
example, various combinations of the features of the following dependent could be

made with the features of the independent claims without departing from the scope of

the present invention.
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1. Apparatus for processing data, said apparatus comprising:

a processor operable in a plurality of modes and either a secure domain or a

non-secure domain including:

at least one secure mode being a mode in said secure domain; and

B P . e R o g e =

O1i 1iG1i-SSCuiC mioac ocilig a 1 16d€ i 5
wherein

when said processor is executing a program in a secure mode said program has
access to secure data which is not accessible when said processor is operatin'g n a
non-secure mode;’

said processor is responsive to one or more exception conditions for triggering
éxception processing; and '

said processor being responsive to one or more parameters specifying which of
said exceptions should be handled by a secure mode exception handler executing ina

secure mode and which of said exceptions should be handled by an exception handler

executing in a mode within a current one of said secure domain and said non-secure

domain when that exception occurs.

2. Apparatus as claimed in claim 1, wherein at least one of said parameters is

stored in an exception trap mask register.

3. Apparatus as claimed in claim 2, wherein said exception trap mask register is

writable when said processor is in a secure mode and said exception trap mask

register is non-writable when said processor is in a non-secure mode.

4. Apparatus as claimed in any one of claims 2 and 3, further comprising a

configuration controlling coprocessor associated with said processor and wherein said

exception. trap mask register is a register within said configuration controlling

COpProcessor.

5. Apparatus as claimed in any one of the preceding claims, wherein at least one

of said parameters is a signal value provided at a hardware input to said processor.
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6. Apparatus as claimed in any one of the preceding claims, wherein said secuie

exception handler is part of a secure operating system operable in said secure mode.

7. Apparatus as claimed in any one of the preceding claims, wherein said non-
secure exception handler is part of a non-secure operating sysiem Operavie in said

non-secure mode.

8: Apparatus as claimed in any one of the -preceding claims, wherein said
processor is also operable in a monitor mode and any switching between a secure
mode and a non-secure mode required for handling of an exception as specified by
said parameters takes place via said monitor mode, said processor being operable at
least partially in said monitor mode to execute a monitor program to manage

switching between said secure mode and said non-secure mode.

9. Apparatus as claimed in claim 8, wherein said monitor program may change

said parameters to determine where an exception should be handled.

10. Apparatus as claimed in any one of claims 8 and 9, wherein said processor
includes a register bank and said monitor program is operable to flush at least a
po;na;x_o_f_s-aud register bank shared between said secure mode and said non-secure
mode when switching from said secure mode to said non-secure mode such that no
secure data held within said register bank may pass from said secure mode to said

non-secure mode other than as permitted by said monitor program.

11. - A method of processing data, said method comprising the steps of:
» executing a program with a processor operable in a plurality of modes and
cither a secure domain or a non-secure domain including:

at least one secure mode being a mode in said secure domain; and

at least one non-secure mode being a mode in said non-secure domain;

wherein
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when said processor is executing a program in a secure mode said program has-
access to secure data which is not accessible when said processor is operating in a
non-secure mode; |

in response to one or more exception conditions triggering exception
processing using an exception handler; wherein

said processor selects an exception handler in response to one or more
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parameters specifying which o
exception handler executing in a secure mode and which of said exceptions shouid be
handled by an exception handler executing in a mode within a current one of said

secure domain and said non-secure domain when that exception occurs.

12. A method as claimed in claim11, wherein at least one of said parameters is

stored in an exception trap mask register.

13. A method as claimed in claim 12, wherein said exception trap mask register is
writable when said processor is in a secure mode and said exception trap mask

register is non-writable when said processor is in a non-secure mode.

14. A method as claimed in any one of claims 12 and 13, further comprising a
conﬁguratibn' controlling coprocessor associated with said processor and wherein said
exception trap mask register is a register within said configuration controlling

COprocessor.

15. A method as claimed in any one of claims 11 to 14, wherein at least one of

said parameters is a signal value provided at a hardware input to said processor.

16. A method as claimed in any one of claims 11 to 15, wherein said secure

exception handler is part of a secure operating system operable in said secure mode.
17. A method as claimed in any one of claims 11 to 16, wherein said non-secure

exception handler is part of a non-secure operating system operable in said non-secure

mode.
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18. A fneﬁhod as claimed in any one of claims 11 to 17, wherein said processor is
aiso operavie in a moniior mode and any switching between a secure mode and a noi-
secure mode required for handling of an exception as specified by said parameters
takes place via said monitor mode, said processor being Qpefable at least partially in
said monitor mode tc execute a monitor program to manage switching between said

secure mode and said non-secure mode.

19. A method as ciaimed in ciaim 18, wherein said monitor program may change
said parameters to determine where an exception should be handled.

20 A method as claimed in any one of claims 18 and 19, wherein said processor
includes a register bank and said monitor program is operable to flush at least a
portion of said register bank shared between said secure mode and said non-secure
mode when switéhing from said secure mode to said non-secure mode such that no
secure data held within said register bank may pass from said secure mode to said

non-secure mode other than as permitted by said monitor program.
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| ABSTRACT |
EXCEPTION HANDLING CONTROL IN A SECURE PROCESSING
SYSTEM

There is a provided a data processing system comprising:
a processor operable in a plurality of modes and either a secure domain or a
non-secure domain inciuding;:
at least one secure mode being a mode in said secure domain; and
at least one non-secure mode being a mode in said non-secure domain;
wherein
when said processor is executing a program in a secure mode said program has
access to secure data which is not accessible when said processor is operating in a
non-secure mode;
said processor is responsive to one or more exception conditions for triggering
exception processing; and
3 .
said processor being responsive to one or more parameters specifying which of said
exceptions should be handled by a secure mode exceptibn handler executing in a
secure mode and which of said exceptions should be handled by an exception handler
executing in a mode within a current one of said secure domain and said non-secure

domain when that exception occurs.

[Figure 18]
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If VA corresponds to PA in secure
memory
=> partition checker generates an
ABORT
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How to program?

Method of entry How to enter? Entry mode
Breakpoint hits Debug TAP or Program breakpoint register and/or Halt/monitor
. : |software (CP14) context-1D register and comparisons M

succeed with Instructnon Address and/or
'|CP15 Context ID A.

Software breakpoint - {Put a BKPT instruction into scan | BKPT instruction must reach executlon Halt/monitor
instruction chain 4 (Instruction Transfer stage.
Register) through Debug TAP or .
Use BKPT instruction directly in
the code.
Vector trap breakpoint Debug TAP Program vector trap register and  |Halt/monitor
. _ address matches. -
- Watchpoint hits Debug TAP Program watchpoint register and/or | Halt/monitor
‘ or software (CP14) context-1D register and comparisons )
succeed with Instruction Address and/or i
o © CP15 Context ID (3. ;
Iinternal debug request Debug TAP Halt instruction has been scanned in. Halt
Halt

External debug request

EDBGRAQ input pin is asserted.

(") In monitor mode, breakpomts and watchpoints cannot be data-dependent
( ). The cores have support for thread-aware breakpoints and watchponnts\m otdertbcxso\n— 10 enable secure

debug on some particular threads.

24
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Name Meaning Reset Access Inserted in
value scan chain
B : . for test
Monitor 0: halt mode 1 R/W by programming the ICE by the JTAG (scanl) yes
mode enable 1: monitor mode
bit = R/W by using MRC/MCR instruction (CP14)
Secure debug | 0: debug in non- 0 In functional mode or debug monitor mode: R/'W by no
enable bit secure-world only. using MRC/MCR instruction (CP14) (only in secure
1: debug in secure supervisor mode)
world and non- :
secure world In Debug halt mode: No access — MCR/MRC
instructions have any effect.
(R/W by programming the ICE by the JTAG (scanl)
if JSDAEN=1
Secure trace 0: ETM is enabled 0 In functional mode or debug monitor mode: R/'W by no
enable bit in non-secure using MRC/MCR instruction (CP14) (only in secure
world only. supervisor mode)
1: ETM is enabled
in secure world In Debug halt mode: No access — MCR/MRC
and non-secure instructions have any effect.
world ) '
(R/W by programming the ICE by the JTAG (scanl)
: if ISDAEN=1
Secure user- 0: debug is not 1 In functional mode or debug monitor mode: R/'W by no
mode enable | possible in secure using MRC/MCR instruction (CP14) (only in secure
bit user mode supervisor mode)
"1: debug is
possible in secure | In Debug halt mode: No access — MCR/MRC
user mode instructions have any effect. '
(R/W by programming the ICE by the JTAG (scanl)
, if ISDAEN=1
Secure 0: debug is not 0 In functional mode or debug monitor mode: R/W by no
thread-aware | possible for a using MRC/MCR instruction (CP14) (only in secure
enable bit particular thread supervisor mode)
1: debug is
possible for a In Debug halt mode: No access — MCR/MRC.
particular thread instructions have any effect.

(R/W by programming the ICE by the JTAG (scanl)
if JISDAEN=1 .

Figure 35
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o| _/ 0

1/ CK
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Function Table
D | si| SE|CK |Qlntl]
ol xlo |/} O
P xloe |/} 1
x| x1x | \o]| Qnl
x| ol 1 |_/ 0
x| 1y 1| _/ 1

Figure 37

Logic Symbol
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CP14 bits in Debug and Status Control register

Secure debug enable | Secure user-mode Secure thread-aware meaning
bi‘t; debug enable bit - debug enable bit .
0 X - X - | No intrusive debug in entire secure world is possible.

Any debug request, breakpoints, watchpoints, and other
mechanism to enter debug state are ignored in entire
secure world. '

Debug in entire secure world is possible

-*| Debug in secure user-mode only. Any debug request,

breakpoints, watchpoints, and other mechanism to enter
debug state are taken into account in user mode only.
(Breakpoints and watchpoints linked or not to a thread
ID are taken into account). Access in debug is restricted

.| to what secure user can have access to.

Debug is possible only in some particular threads. In
that case only thread-aware breakpoints and
watchpoints linked to a thread ID are taken into account
to enter debug state. Each thread can moreover debug
its own code, and only its own code. -

Figure },3a

CP14 bits in Debug and Status Control register

meaning

Secure trace enable Secure user-mode Secure thread-aware
_bit debug enable bit debug enable bit .
BN X _ X i No observable debug in entire secure world is possible.

Trace module (ETM) must not trace internal core
activity, '

X

Trace in entire secure world is possible

~+f Trace is possible when the core is in secure user-mode
| only. : 2

Trace is possible only when the core is ‘executing some
particular threads in secure user mode. Particular
hardware must be dedicated for this, "or re-use
breakpoint register pair: Context ID match must enable
trace instead of entering debug state.

Figure 43 S
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Method of entry Entry when in non-secure world  |entry when in secure world

Breakpoint hits Non-secure prefetch abort handler |secure prefetch abort handler

Software breakpoint instruction | Non-secure prefetch abort handler [secure prefetch abort handler

Vector trap breakpoint . Disabled for non-secure data abort |Disabled for secure data abort and
and non-secure prefetch abort secure prefetch abort exceptions .
interruptions. For other non-secure |For other exceptions, secure prefetch
exceptions, prefetch abort. abort.

Watchpoint hits Non-secure data abort handler . |secure data abort handler

Internal debug request - Debug state in halt mode . - |debug state in halt mode

External debug request Debug state in halt mode debug state in halt mode

[

;vector trap register, :

2) Note that when external or internal debug request is asserted, the core enteré halt mode and not monitor mode.

Figure 45A . ‘i

Method of entry

entry in secure world

Entry in non-secure worid

Breakpoint hits Non-secure prefetch abort handler

Software breakpoint instruction [Non-secure prefetch abort handler

Vector trap breakpoint Disabled for non-secure data abort and
non-secure prefetch abort interruptions.
For others interruption non-secure prefetch
abort.

Watchpoint hits Non-secure data abort handler

Internal debug request Debug state in halt mode

External debug request

Debug re-entry from system
speed access

Debug state m halt mode

s if”ﬁb"le

) As substitution of BKPT instruction in secure world from non-secure world is not possible, non-secure abort

must handle the violation.

Figure /. 95
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